K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2019

Ta có:

+) f(x) : (x+2) dư 3

=> Tồn tại đa thức g(x) sao cho:  \(f\left(x\right)=\left(x+2\right).g\left(x\right)+3\)(1)

+) f(x) : x2 +2 dư 3x + 1.

=> Tồn tại đa thức h(x) sao cho: \(f\left(x\right)=\left(x^2+2\right).g\left(x\right)+3x+1\)(2)

+) Vì (x + 2)(x^2 + 2) có bậc là 3 => \(f\left(x\right):\left(x+2\right)\left(x^2+2\right)\) có dư là đa thức có bậc là 2 

Giả sự số dư là: \(ax^2+bx+c\)

=> Tồn tại đa thức k(x) sao cho: \(f\left(x\right)=\left(x^2+2\right)\left(x+2\right).k\left(x\right)+ax^2+bx+c\)

Có: \(f\left(x\right)=\left(x^2+2\right)\left(x+2\right).k\left(x\right)+a\left(x^2+2\right)+bx+c-2a\)

\(=\left(x^2+2\right)\left[\left(x+2\right).k\left(x\right)+a\right]+bx+c-2a\)(3)

Từ (2), (3) => \(bx+c-2a=3x+1\)=> \(\hept{\begin{cases}b=3\\c-2a=1\end{cases}}\)(4)

Có: \(f\left(x\right)=\left(x^2+2\right)\left(x+2\right).k\left(x\right)+\left(x+2\right).\left(ax+b-2a\right)+c+4a-2b\)

\(=\left(x+2\right)\left(\left(x^2+2\right).k\left(x\right)+\left(ax+b-2a\right)\right)+c+4a-2b\)(5)

Từ (1) và (5) => \(c+4a-2b=3\) (6)

Từ (4) và (6) => c = 11/3; a =4/3 ; b =3

Vậy số dư là: \(\frac{4}{3}x^2+3x+\frac{11}{3}\)

29 tháng 3 2021

có f(x)=(x+1)A(x)+5f(x)=(x+1)A(x)+5

f(x)=(x2+1)B(x)+x+2f(x)=(x2+1)B(x)+x+2

do f(x) chia cho (x+1)(x2+1)(x+1)(x2+1)là bậc 3 nên số dư là bậc 2. ta có f(x)=(x+1)(x2+1)C(x)+ax2+bx+c=(x+1)(x2+1)C(x)+a(x2+1)+bx+caf(x)=(x+1)(x2+1)C(x)+ax2+bx+c=(x+1)(x2+1)C(x)+a(x2+1)+bx+c−a

=(x2+1)(C(x).x+C(x)+a)+bx+ca=(x2+1)(C(x).x+C(x)+a)+bx+c−a

Vậy bx+ca=x+2\hept{b=1ca=2bx+c−a=x+2⇒\hept{b=1c−a=2

mặt khác ta có f(1)=5ab+c=5a+c=6\hept{a=2c=4f(−1)=5⇔a−b+c=5⇒a+c=6⇒\hept{a=2c=4

vậy số dư trong phép chia f(x) cho x3+x2+x+1x3+x2+x+1là 2x2+x+4

1 tháng 5 2021

quá đơn giản

13 tháng 5 2021

đơn giản thì trả lời đi , fly color à bạn :))) 

AH
Akai Haruma
Giáo viên
14 tháng 1 2020

Lời giải:

Đa thức $(x+1)(x^2+1)$ có bậc 3 nên đương nhiên dư sẽ có bậc nhỏ hơn $3$
Đặt $f(x)=(x+1)(x^2+1)Q(x)+ax^2+bx+c$ $(a,b,c\in\mathbb{R}$)

Trong đó: $Q(x)$ và $ax^2+bx+c$ lần lượt là đa thức dương và đa thức dư khi chia $f(x)$ cho $(x+1)(x^2+1)$

Theo bài ra ta có:

$f(-1)=a-b+c=4(1)$

$f(x)=(x+1)(x^2+1)Q(x)+a(x^2+1)+bx+c-a$ nên $f(x)$ chia $x^2+1$ dư $bx+c-a$

$\Rightarrow bx+c-a=2x+3$ với mọi $x$

\(\Rightarrow \left\{\begin{matrix} b=2\\ c-a=3\end{matrix}\right.(2)\)

Từ $(1);(2)\Rightarrow a=\frac{3}{2}; b=2; c=\frac{9}{2}$

Vậy phần dư là $\frac{3}{2}x^2+2x+\frac{9}{2}$

19 tháng 1 2020

theo định lí bơ- zu ta có: f(x) : x+1 dư 4 =>f(-1)=4
do bậc của đa thức chia (x+1)(x^2+1) là 3
nên bậc đa thức dư có dang ax^2 +bx+c
theo đinh nghĩa phep chia có dư ta có:
f(x)= (x+1)(x^2 +1)q(x) + ax^2 +bx+c
=(x+1)(x^2 +1)q(x) + ax^2 +a -a +bx+c
=(x+1)(x^2 +1)q(x) + a(x^2 +1) -a +bx+c
= [(x+1)q(x) + a](x^2 +1) +bx+c- a
mà f(x) : x^2+1 dư 2x+3 nên b=2 và c-a = 3(1)
f(-1)=4 =>a -b+ c=4(2)
từ (1)(2) ta có:
{b=2
{c- a =3
{a -b+ c =4
<=>{b=2
------{c -a =3
------{a+c =6
<=>{a= 3/2
------{b=2
------{c=9/2
vậy đa thức dư là :3/2x^2 +2x +9/2