Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương pháp: Sử dụng phương pháp đổi biến, đặt t = u(x)
Cách giải:
Đặt
Đổi cận
Vì 0<a<b<c<d<e<f nên :
(a-b) < 0 ; (c-d) < 0 ; (e-f) < 0
và (b-a) > 0 ; (d-c) > 0 ; (f-e) > 0
Do đó (a-b)(c-d)(e-f) < 0 ; (b-a)(d-c)(f-e) > 0
Mà (a-b)(c-d)(e-f).x=(b-a)(d-c)(f-e) <=> x = -1
Đáp án D
Ta có hàm số g x = f x - 2018 là hàm số bậc ba liên tục trên R.
Do a>0 nên l i m x → - ∞ g ( x ) = - ∞ ; l i m x → + ∞ g ( x ) = + ∞
Để ý g 0 = d - 2018 > 0 ; g 1 = a + b + c + d - 2018 < 0 nên phương trình g(x)=0 có đúng 3 nghiệm phân biệt trên R.
Khi đó đồ thị hàm số g x = f x - 2018 cắt trục hoành tại 3điểm phân biệt nên hàm số y = f x - 2018 có đúng 5 cực trị.
Theo tính chất tích phân ta có:
+ ) ∫ a b f ( x ) d x + ∫ b c f ( x ) d x + ∫ c a f ( x ) d x
∫ c a f ( x ) d x + ∫ c a f ( x ) d x = ∫ a a f ( x ) d x = 0
Đáp án A đúng.
+ ) ∫ a b c f ( x ) d x = c ∫ a b f ( x ) d x
với
c
∈
ℝ
.Đáp án B đúng.
+ ) ∫ a b ( f ( x ) - g ( x ) ) d x + ∫ a b g ( x )
= ∫ b a f ( x ) d x - ∫ a b g ( x ) d x + ∫ a b g ( x ) d x = ∫ a b f ( x ) d x
Đáp án D đúng.
Đáp án C sai.
Chọn đáp án C.
Chọn B