Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Dễ dàng nhận thấy \(x=-1\) không phải là 1 nghiệm của đa thức P(x).
- Gọi b là 1 nghiệm của đa thức \(P\left(x\right)=x^3+3x^2-1\)
Do đó: \(b^3+3b^2-1=0\)
\(\Rightarrow\left(b^3+3b^2+3b+1\right)-3\left(b+1\right)+1=0\)
\(\Rightarrow\left(b+1\right)^3-3\left(b+1\right)+1=0\)
\(\Rightarrow\dfrac{\left(b+1\right)^3-3\left(b+1\right)+1}{\left(b+1\right)^3}=0\)
\(\Rightarrow\left(\dfrac{1}{b+1}\right)^3-3.\left(\dfrac{1}{b+1}\right)^2+1=0\)
\(\Rightarrow\left(-\dfrac{1}{b+1}\right)^3+3.\left(-\dfrac{1}{b+1}\right)^2-1=0\)
Thay \(x=-\dfrac{1}{b+1}\) vào \(P\left(x\right)=x^3+3x^2-1\) ta được:
\(P\left(-\dfrac{1}{b+1}\right)=\left(-\dfrac{1}{b+1}\right)^3+3.\left(-\dfrac{1}{b+1}\right)^2-1=0\)
\(\Rightarrow-\dfrac{1}{b+1}\) là một nghiệm của đa thức P(x).
Đặt \(a=-\dfrac{1}{b+1}\Rightarrow ab+a+1=0\) \(\Rightarrowđpcm\)
Gọi nghiệm của đa thức là a => P(a)=0
=> P(2)-P(a)chia hết cho2-a
=> 13 chia hết cho 2-a
=> a có thể là 1; 3; -11; 15
Lại có P(10)-P(a)=5 chia hết cho 10-a=> 5 chia hết cho a-10
=>a có thể là 9; 11; 15; -15
=> a=15
=> P(15)=0
Câu hỏi của trần manh kiên - Toán lớp 9 - Học toán với OnlineMath
Em tham khảo câu tương tự tại đây nhé.
b) Ta có:
\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b+b+c+c+a}{c+a+b}\) ( tính chất dãy tỉ số bằng nhau)
\(=\frac{2a+2b+2c}{a+b+c}=2\)
\(\Rightarrow\hept{\begin{cases}a+b=2c\\b+c=2a\\c+a=2b\end{cases}}\)
Ta có:
\(b+c=2a\)
\(\Rightarrow2b+2c=4a\)
Mà 2c=a+b
\(\Rightarrow\)2b+a+b=4a
\(\Rightarrow3b=3a\)
\(\Rightarrow a=b\)
Chứng minh tương tự:b=c;a=c
Thay vào biểu thức:
\(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=2\times2\times2=8\)8