Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta luôn có |x - y| và x - y luôn cùng tính chẵn lẻ (x, y nguyên)
Do đó S cùng tính chẵn lẻ với (a - b) + (b - c) + (c - d) + (d - a) (Bỏ GTTĐ)
Ta có:
(a - b) + (b - c) + (c - d) + (d - a)
= a - b + b - c + c - d + d - a
= 0
Vì 0 chẵn => S chẵn (ĐPCM)
đặt S=(a-b)(a-c)(a-d)(b-c)(b-d)(c-d)
trong 4 số nguyên a,b,c,d chắc chắn có 2 số chia hết cho 3 có cùng số dư =>hiệu của chúng chia hết cho 3
nên S chia hết cho 3 (1)
Ta lại có trong 4 số nguyên a,b,c,d hoac có 2 số chẵn,2 số lẻ,chẳng hạn a,b là số chẵn và c,d là số lẻ,thế thì a-b và c-d chia hết cho 2 nên (a-b)(c-d) chia hết cho 4=> s chia hết cho 4
Hoặc nếu ko phải như trên thì trong 4 số trên tồn tại 2 số chia 4 có cùng số dư nên hiệu của chúng chia hết cho 4=>S chia hết cho 4 (2)
từ (1) và (2) ta có S chia hết cho 3 và S chia hết cho 4 mà (3;4)=1 nên S chia hết cho 12(đpcm)
tick nhé,khó lắm đấy
Dùng ng lí Dirichlet