Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{\left(a+b+a+c\right)^2}\le\dfrac{1}{4\left(a+b\right)\left(a+c\right)}=\dfrac{1}{4\left(a^2+ab+bc+ca\right)}\le\dfrac{1}{64}\left(\dfrac{1}{a^2}+\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)\)
\(\le\dfrac{1}{64}\left(\dfrac{1}{a^2}+\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)=\dfrac{1}{64}\left(\dfrac{2}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)\)
Tương tự và cộng lại:
\(P\le\dfrac{1}{64}\left(\dfrac{4}{a^2}+\dfrac{4}{b^2}+\dfrac{4}{c^2}\right)=\dfrac{1}{16}.3=\dfrac{3}{16}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Áp dụng bđt: \(\dfrac{1}{x+y}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\left(1\right)\)
\(\dfrac{1}{2a+b+c}=\dfrac{1}{\left(a+b\right)+\left(a+c\right)}\le\dfrac{1}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)\)
\(\Rightarrow P\le\dfrac{1}{16}\left[\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)^2+\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}\right)^2+\left(\dfrac{1}{b+c}+\dfrac{1}{a+c}\right)^2\right]\)\(\Rightarrow16P\le\dfrac{2}{\left(a+b\right)^2}+\dfrac{2}{\left(b+c\right)^2}+\dfrac{2}{\left(a+c\right)^2}+\dfrac{2}{\left(a+b\right)\left(b+c\right)}+\dfrac{2}{\left(a+b\right)\left(b+c\right)}+\dfrac{2}{\left(b+c\right)\left(c+a\right)}\)
Áp dụng: \(x^2+y^2+z^2\ge xy+yz+xz\left(2\right)\) với a+b=x,b+c=y,c+a=z
\(\Rightarrow16P\le\dfrac{4}{\left(a+b\right)^2}+\dfrac{4}{\left(b+c\right)^2}+\dfrac{4}{\left(c+a\right)^2}\)
Ta có: \(\dfrac{1}{\left(a+b\right)^2}\le4.16.\left(\dfrac{1}{a}+\dfrac{1}{b}\right)^2\)(do (1))
\(\Rightarrow16P\le\dfrac{1}{4}.16\left[\left(\dfrac{1}{a}+\dfrac{1}{b}\right)^2+\left(\dfrac{1}{b}+\dfrac{1}{c}\right)^2+\left(\dfrac{1}{c}+\dfrac{1}{a}\right)^2\right]=\dfrac{1}{4}\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+\dfrac{2}{ab}+\dfrac{2}{bc}+\dfrac{2}{ca}\right)\le\dfrac{1}{4}.4.\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)=3\)(do(2) và \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=3\))
\(\Rightarrow P\le\dfrac{3}{16}\)
\(ĐTXR\Leftrightarrow a=b=c=1\)
We have:
\(M=1-\frac{1}{3}\Sigma_{cyc}\frac{a^2+b^2}{a^2+b^2+3}\)
Consider:
\(\Sigma_{cyc}\frac{a^2+b^2}{a^2+b^2+3}\ge\frac{3}{2}\)
\(VT\ge\frac{\left(\Sigma_{cyc}\sqrt{a^2+b^2}\right)^2}{2\left(a^2+b^2+c^2\right)+9}\)
Prove:
\(\frac{\left(\Sigma_{cyc}\sqrt{a^2+b^2}\right)^2}{2\left(a^2+b^2+c^2\right)+9}\ge\frac{3}{2}\)
\(\Leftrightarrow4\Sigma_{cyc}\sqrt{\left(a^2+b^2\right)\left(b^2+c^2\right)}\ge2\left(a^2+b^2+c^2\right)+27\)
Consider:
\(\Sigma_{cyc}\sqrt{\left(a^2+b^2\right)\left(b^2+c^2\right)}\ge\Sigma_{cyc}a^2+\Sigma_{cyc}ab\)
\(\Rightarrow4\Sigma_{cyc}\sqrt{\left(a^2+b^2\right)\left(b^2+c^2\right)}\ge4\Sigma_{cyc}a^2+4\Sigma_{cyc}ab\)
Now we need to prove:
\(4\Sigma_{cyc}a^2+4\Sigma_{cyc}ab=2\Sigma_{cyc}a^2+27\)
\(\Leftrightarrow2\left(a+b+c\right)^2=27\) (not fail)
\(\Rightarrow M\le\frac{1}{2}\)
Sign '=' happen when \(a=b=c=\sqrt{\frac{3}{2}}\)
\(P=2\Sigma a+\Sigma\dfrac{1}{a}=\Sigma a+\Sigma a+\Sigma\dfrac{1}{a}\ge3.\sqrt[3]{\left(\Sigma a\right)^2.\Sigma\dfrac{1}{a}}\)
\(Q=\left(\Sigma a\right)^2.\Sigma\dfrac{1}{a}=\left(3+2\Sigma ab\right).\Sigma\dfrac{1}{a}=3\Sigma\dfrac{1}{a}+4\Sigma a+2\Sigma\dfrac{ab}{c}\ge3\Sigma\dfrac{1}{a}+6\Sigma a=3\left(\Sigma\dfrac{1}{a}+2\Sigma a\right)=3P\)\(\Rightarrow\)\(P\ge3\sqrt[3]{3P}\) \(\Leftrightarrow P^3\ge81P\Leftrightarrow P^2\ge81\left(P>0\right)\Leftrightarrow P\ge9\)
" = " \(\Leftrightarrow a=b=c=1\)
Vì $\large a,b,c \in\mathbb{N^*}$ và $\large a^2+b^2+c^2=3\Rightarrow \left\{\begin{matrix} a<\sqrt{3} & \\ b<\sqrt{3} & \\ c<\sqrt{3} & \end{matrix}\right.$
Ta chứng minh bất đẳng thức phụ sau:
Với $0 <x<\sqrt{3}$ thì $2x+\frac{1}{x} \ge x^2.\frac{1}{2}+\frac{5}{2}(*)$
Thật vậy $(*)$ $\large \Leftrightarrow (x-2)(x-1)^2 \le0$
Do $\large x<\sqrt{3}\Leftrightarrow x<2\Leftrightarrow (x-2)(x-1)^2<0$ (Luôn đúng)
Do đó bất đẳng thức được chứng minh
Dấu $"="$ xảy ra khi $x=1$
Trở lại bài toán:
Áp dụng BĐT $(*)$ ta được:
$\large 2a+\frac{1}{a}+2b+\frac{1}{b}+2c+\frac{1}{c}\ge\frac{1}{2}(a^2+b^2+c^2)+\frac{15}{2}=9$
Do $a^2+b^2+c^2=3$
Vậy $GTNN=9$
Dấu $"="$ xảy ra khi: $a=b=c=1$
\(\frac{ab+1}{a+b}< \frac{3}{2}\Rightarrow2ab+2< 3a+3b\Rightarrow2ab+2-3a-3b< 0\)
\(\Leftrightarrow a\left(2b-3\right)+2-3b< 0\Rightarrow2a\left(2b-3\right)+4-6b< 0\)
\(\Leftrightarrow2a\left(2b-3\right)-3\left(2b-3\right)< 5\Leftrightarrow\left(2a-3\right)\left(2b-3\right)< 5\)
Giả sử \(a\le b\Rightarrow-1\le2a-3\le2b-3\)(vì a,b nguyên dương)
+)Nếu \(2b-3=1\Rightarrow b=2\Rightarrow P=\frac{65}{16}\left(2\right)\)
+)Nếu \(2b-3=3\Rightarrow b=3\Rightarrow P=\frac{31}{5}\left(3\right)\)
Vậy so sánh \(\left(1\right);\left(2\right);\left(3\right)\Rightarrow P_{Max}=\frac{31}{5}\)