Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x;y\ge0\)
Với \(x=0\) hoặc \(y=0\) đều ko là nghiệm
Với \(x;y>0\) hệ tương đương:
\(\left\{{}\begin{matrix}1+\dfrac{1}{x+y}=\dfrac{2}{\sqrt{3x}}\\1-\dfrac{1}{x+y}=\dfrac{4\sqrt{2}}{\sqrt{7y}}\end{matrix}\right.\)
Lần lượt cộng vế với vế và trừ vế cho vế ta được:
\(\left\{{}\begin{matrix}1=\dfrac{1}{\sqrt{3x}}+\dfrac{2\sqrt{2}}{\sqrt{7y}}\\\dfrac{1}{x+y}=\dfrac{1}{\sqrt{3x}}-\dfrac{2\sqrt{2}}{\sqrt{7y}}\end{matrix}\right.\)
Nhân vế với vế:
\(\dfrac{1}{x+y}=\dfrac{1}{3x}-\dfrac{8}{7y}\)
\(\Leftrightarrow\dfrac{y}{3}-\dfrac{8x}{7}=1\)
\(\Rightarrow y=\dfrac{24x+21}{7}\)
Rồi thế vào 1 trong các pt đầu
Nhưng em có nhầm đề ko mà con số xấu kinh khủng vậy nhỉ? Số \(\sqrt{7}\) kia cho xấu 1 cách ko cần thiết, nó ko ảnh hưởng đến cách giải mà chỉ khiến cho việc tính toán khó khăn 1 cách cơ học khá vớ vẩn
\(\left\{{}\begin{matrix}x-\dfrac{1}{x^3}=y-\dfrac{1}{y^3}\left(1\right)\\\left(x-4y\right)\left(2x-y+4\right)=-36\left(2\right)\end{matrix}\right.\)
\(Đk:\left\{{}\begin{matrix}x,y\ne0\\x\ne4y\\2x\ne y-4\end{matrix}\right.\)
\(x-\dfrac{1}{x^3}=y-\dfrac{1}{y^3}\)
\(\Rightarrow x-y+\dfrac{1}{y^3}-\dfrac{1}{x^3}=0\)
\(\Rightarrow x-y+\dfrac{x^3-y^3}{x^3y^3}=0\)
\(\Rightarrow x-y+\dfrac{\left(x-y\right)\left(x^2+xy+y^2\right)}{x^3y^3}=0\)
\(\Rightarrow\left(x-y\right).\dfrac{x^2+xy+y^2+x^3y^3}{x^3y^3}=0\)
\(\Rightarrow\left[{}\begin{matrix}x=y\\x^2+xy+y^2+x^3y^3=0\end{matrix}\right.\)
Với \(x=y\) . Thay vào (2) ta được:
\(\left(x-4x\right)\left(2x-x+4\right)=-36\)
\(\Leftrightarrow-3x.\left(x+4\right)=-36\)
\(\Leftrightarrow x\left(x+4\right)=12\)
\(\Leftrightarrow x^2+4x-12=0\)
\(\Leftrightarrow\left(x+2\right)^2-16=0\)
\(\Leftrightarrow\left(x+6\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\Rightarrow y=2\\x=-6\Rightarrow y=-6\end{matrix}\right.\)
Với \(x^2+xy+y^2+x^3y^3=0\) . Ta sẽ chứng minh trường hợp này vô nghiệm.
Có: \(\left(x+y\right)^2+x^3y^3-xy=0\)
\(\Rightarrow\left(x+y\right)^2+xy\left(xy+1\right)\left(xy-1\right)=0\left(3\right)\)
Với \(xy>1\Rightarrow VT\left(3\right)>0\Rightarrow ptvn\)
Với \(xy=1\Rightarrow\left(x+y\right)^2=0\Rightarrow x=-y\)
\(\Rightarrow x^2=-1\Rightarrow ptvn\)
Với \(1>xy\ge0\Rightarrow xy\left(xy+1\right)\left(xy-1\right)\le0\) (có thể xảy ra).
Với \(0>xy>-1\Rightarrow VT\left(3\right)>0\Rightarrow ptvn\)
Với \(xy< -1\Rightarrow xy\left(xy-1\right)\left(xy+1\right)\le0\) (có thể xảy ra).
Vì \(x,y\ne0\) nên ta có: \(\left[{}\begin{matrix}1>xy>0\\xy< -1\end{matrix}\right.\left('\right)\)
\(\left(2\right)\Rightarrow2x^2-xy+4x-8xy+4y^2-16y=-36\)
\(\Rightarrow2x^2+4x+4y^2-16y+36=9xy\)
\(\Rightarrow2\left(x^2+2x+1\right)+4\left(y^2-4y+4\right)+18=9xy\)
\(\Rightarrow2\left(x+1\right)^2+4\left(y-2\right)^2+18=9xy>18\)
\(\Rightarrow xy>2\left(''\right)\)
Từ \(\left('\right),\left(''\right)\) suy ra hệ vô nghiệm.
Vậy hệ phương trình đã cho có nghiệm \(\left(x,y\right)\in\left\{\left(2;2\right),\left(-6;-6\right)\right\}\)
a: \(\Leftrightarrow\left\{{}\begin{matrix}\left(x+2\right)\left(y+3\right)=xy+100\\\left(x-2\right)\left(y-2\right)=xy-64\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x+2y=94\\-2x-2y=-68\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=26\\y=8\end{matrix}\right.\)
b: \(\Leftrightarrow\left\{{}\begin{matrix}-3x+2y=0\\-x+y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)
c: \(\Leftrightarrow\left\{{}\begin{matrix}xy-2x=xy-4x+2y-8\\2xy+7x-6y-21=2xy+6x-7y-21\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-2y=-8\\x+y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=2\end{matrix}\right.\)
part full :v
*Th 1: \(x+y=2\)
\(Pt\left(1\right)\Leftrightarrow3y\sqrt{2-y^2}=x+\dfrac{4}{x+1}\)
xét \(VT=3y\sqrt{2-y^2}=3\sqrt{y^2\left(2-y^2\right)}\le3.\dfrac{y^2+2-y^2}{2}=3\)(theo AM-GM)
\(VT=x+\dfrac{4}{x+1}=\left(x+1\right)+\dfrac{4}{x+1}-1\ge2\sqrt{\dfrac{4\left(x+1\right)}{x+1}}-1=4-1=3\)(theo AM-GM)
do đó \(VT\le3;VF\ge3\)
\(VT=VF\Leftrightarrow\left\{{}\begin{matrix}y^2=2-y^2\\x+1=\dfrac{4}{x+1}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=\pm1\\\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\end{matrix}\right.\)(tmđkxđ)(4 cặp)
*TH 2 \(\left(x+1\right)\sqrt{2-y^2}=1\Leftrightarrow x+1=\dfrac{1}{\sqrt{2-y^2}}\)(\(-\sqrt{2}< y< \sqrt{2}\))
thế vào Pt(1) , bình phương giải (nhác làm quá)
3a)\(\left\{{}\begin{matrix}\dfrac{1}{x-2}+\dfrac{1}{2y-1}=2\\\dfrac{2}{x-2}-\dfrac{3}{2y-1}=1\end{matrix}\right.\) (ĐK: x≠2;y≠\(\dfrac{1}{2}\))
Đặt \(\dfrac{1}{x-2}=a;\dfrac{1}{2y-1}=b\) (ĐK: a>0; b>0)
Hệ phương trình đã cho trở thành
\(\left\{{}\begin{matrix}a+b=2\\2a-3b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2-b\\2\left(2-b\right)-3b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2-b\\4-2b-3b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2-b\\b=\dfrac{3}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{7}{5}\left(TM\text{Đ}K\right)\\b=\dfrac{3}{5}\left(TM\text{Đ}K\right)\end{matrix}\right.\) Khi đó \(\left\{{}\begin{matrix}\dfrac{1}{x-2}=\dfrac{7}{5}\\\dfrac{1}{2y-1}=\dfrac{3}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7\left(x-2\right)=5\\3\left(2y-1\right)=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7x-14=5\\6y-3=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{19}{7}\left(TM\text{Đ}K\right)\\y=\dfrac{4}{3}\left(TM\text{Đ}K\right)\end{matrix}\right.\) Vậy hệ phương trình đã cho có nghiệm duy nhất (x;y)=\(\left(\dfrac{19}{7};\dfrac{4}{3}\right)\)
b) Bạn làm tương tự như câu a kết quả là (x;y)=\(\left(\dfrac{12}{5};\dfrac{-14}{5}\right)\)
c)\(\left\{{}\begin{matrix}3\sqrt{x-1}+2\sqrt{y}=13\\2\sqrt{x-1}-\sqrt{y}=4\end{matrix}\right.\)(ĐK: x≥1;y≥0)
\(\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{x-1}+2\sqrt{y}=13\\\sqrt{y}=2\sqrt{x-1}-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{x-1}+4\sqrt{x-1}=13\\\sqrt{y}=2\sqrt{x-1}-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7\sqrt{x-1}=13\\\sqrt{y}=2\sqrt{x-1}-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}49\left(x-1\right)=169\\\sqrt{y}=2\sqrt{x-1}-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}49x-49=169\\\sqrt{y}=2\sqrt{x-1}-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{218}{49}\\y=\dfrac{4}{49}\end{matrix}\right.\left(TM\text{Đ}K\right)\)
Bài 4:
Theo đề, ta có hệ:
\(\left\{{}\begin{matrix}3\left(3a-2\right)-2\left(2b+1\right)=30\\3\left(a+2\right)+2\left(3b-1\right)=-20\end{matrix}\right.\)
=>9a-6-4b-2=30 và 3a+6+6b-2=-20
=>9a-4b=38 và 3a+6b=-20+2-6=-24
=>a=2; b=-5
Nếu \(x>0\Rightarrow x+\left|y-1\right|>0>-1\) hệ vô nghiệm
\(\Rightarrow x\le0\Rightarrow\left|x-2\right|=2-x\)
Hệ trở thành: \(\left\{{}\begin{matrix}2-x+2\left|y-1\right|=9\\x+\left|y-1\right|=-1\end{matrix}\right.\)
\(\Rightarrow3\left|y-1\right|=6\Rightarrow\left|y-1\right|=2\Rightarrow\left[{}\begin{matrix}y=3\\y=-1\end{matrix}\right.\)
Thế vào \(x+\left|y-1\right|=-1\Rightarrow x\)
\(HPT\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{y+1}+\dfrac{y}{x+1}=1\\\left(\dfrac{x}{y+1}\right)^2+\left(\dfrac{y}{x+1}\right)^2=1\end{matrix}\right.\)
đặt ẩn giải như thường