K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

Số cách sắp xếp 6 vận động viên vào 6 đường chạy là số hoán vị của 6 phần tử.

=> Số cách xếp các vận động viên vào các đường chạy đó là:

  6! = 720 cách

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

Sau khi được ném đi, quỹ đạo chuyển động của chiếc đĩa nằm trên tiếp tuyến của đường tròn tâm I tại điểm M.

Vậy quỹ đạo chuyển động của chiếc đĩa nằm trên đường thẳng có phương trình là:

\(\begin{array}{l}\left( {\frac{{\sqrt {39} }}{{10}} - 0} \right)\left( {x - \frac{{\sqrt {39} }}{{10}}} \right) + \left( {2 - \frac{3}{2}} \right)\left( {y - 2} \right) = 0\\ \Leftrightarrow \frac{{\sqrt {39} }}{{10}}\left( {x - \frac{{\sqrt {39} }}{{10}}} \right) + \frac{1}{2}\left( {y - 2} \right) = 0\\ \Leftrightarrow \sqrt {39} x + 5y - 13,9 = 0\end{array}\)

30 tháng 9 2023

Sau khi được ném đi, quỹ đạo chuyển động của chiếc đĩa nằm trên tiếp tuyến của đường tròn tâm I tại điểm M.

Vậy quỹ đạo chuyển động của chiếc đĩa nằm trên đường thẳng có phương trình là:

\(\left(\dfrac{\sqrt{39}}{10}-0\right)\left(x-\dfrac{\sqrt{39}}{10}\right)+\left(2-\dfrac{3}{2}\right)\left(y-2\right)=0\\ \Leftrightarrow\dfrac{\sqrt{39}}{10}\left(x-\dfrac{\sqrt{39}}{10}\right)+\dfrac{1}{2}\left(y-2\right)=0\\ \Leftrightarrow\sqrt{39}x+5y-13,9=0\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Gọi O là vị trí của ca nô.

Vẽ \(\overrightarrow {OA} \) là vận tốc dòng nước (chảy từ phía bắc xuống phía nam),

\(\overrightarrow {OB} \) là vận tốc riêng của ca nô (chuyển động từ phía đông sang phía tây)

Khi đó vecto vận tốc của ca nô so với bờ sông là vecto \(\overrightarrow {OA}  + \overrightarrow {OB} \)

Gọi C là đỉnh thứ tư của hình bình hành OACB, ta có: \(\overrightarrow {OC}  = \overrightarrow {OA}  + \overrightarrow {OB} \)

Xét tam giác OBC vuông tại B ta có:

BC = 40; BC = OA = 10.

\( \Rightarrow OC = \sqrt {O{B^2} + B{C^2}}  = 10\sqrt {17} \)

Vậy vận tốc của ca nô so với bờ sông là \(10\sqrt {17} \) km/h.

24 tháng 9 2023

Tham khảo:

a) Ta có sơ đồ đường đi như sau:

 

Trong đó: B là nơi động cơ bị hỏng, C là ví trí neo đậu của tàu trên hòn đảo.

Khoảng cách từ cảng A tới đảo nơi tàu neo đậu là đoạn AC.

 Quãng đường tàu đi được sau 90 phút hay 1,5 giờ (ngay trước khi hỏng động cơ) là:

70.1,5 = 105 (km) hay AB = 105.

Sau 2 giờ tàu trôi tự do từ B đến C với vận tốc 8km/h , suy ra BC= 8.2 = 16 (km).

Ban đầu tàu di chuyển theo hướng \(S{70^o}E\) nên \(\widehat {BAS} = {70^o}\). Sau khi động cơ bị hỏng, tàu trôi theo hướng Nam do đó BC song song với AS.

\( \Rightarrow \widehat {ABC} = {180^o} - \widehat {BAS} = {110^o}\)

Áp dụng định lí cosin cho tam giác ABC ta có:

\({AC^2} = {BC^2} + {AB^2} - 2.AC.BC.\cos B\)

\(\begin{array}{l} \Rightarrow {AC^2} = {16^2} + {105^2} - 2.16.105.\cos {110^o} \approx 12430\\ \Rightarrow AC \approx 111,5.\end{array}\)

Vậy khoảng cách từ cảng A tới đảo nơi tàu neo đậu là khoảng 111,5 km.

b) 

Theo sơ đồ, hướng từ cảng A tới đảo nơi tàu neo đậu là \(S{\alpha ^o}E\) với \({\alpha ^o} = \widehat {CAS}\).

Do BC // AS nên  \(\widehat {CAS}= \widehat {ACB}\)

Áp dụng định lí sin cho tam giác ABC ta có:

\(\frac{BC}{{\sin A}} = \frac{AC}{{\sin B}} = \frac{AB}{{\sin C}}\)\( \Rightarrow \sin C = \frac{{AB.\sin B}}{AC}\)

Mà \(\widehat B = {110^o}\); \(AC \approx 111,5\); AB = 105.

\(\begin{array}{l} \Rightarrow \sin C= \frac{{105.\sin {{110}^o}}}{{111,5}} \approx 0,885\\ \Rightarrow \widehat C \approx {62^o}(do\;\widehat C < {90^o})\end{array}\)

Vậy hướng từ cảng A tới đảo nơi tàu neo đậu là \(S{62^o}E\).

a: Gọi hàm số bậc hai cần tìm là (P): \(y=ax^2+bx+c\)

Thay x=0 và y=-7 vào (P), ta được:

\(a\cdot0^2+b\cdot0+c=-7\)

=>c=-7

=>(P): \(y=ax^2+bx-7\)

Thay x=-4 và y=10 vào (P), ta được: \(a\cdot\left(-4\right)^2+b\cdot\left(-4\right)-7=10\)

=>16a-4b=17(1)

Thay x=20 và y=5 vào (P), ta được:

\(a\cdot20^2+b\cdot20-7=5\)

=>400a+20b=12(2)

Từ (1) và (2) ta có hệ phương trình:

\(\left\{{}\begin{matrix}16a-4b=17\\400a+20b=12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}80a-20b=85\\400a+20b=12\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}480a=97\\16a-4b=17\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{97}{480}\\4b=16a-17=-\dfrac{413}{30}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}a=\dfrac{97}{480}\\b=-\dfrac{413}{120}\end{matrix}\right.\)

Vậy: (P): \(y=\dfrac{97}{480}x^2-\dfrac{413}{120}x-7\)

24 tháng 9 2023

Tham khảo:

 

Lấy các điểm: A, C sao cho:

Vectơ vận tốc dòng nước\(\overrightarrow {{v_n}}  = \overrightarrow {OA} \)

Vectơ vận tốc chuyển động \(\overrightarrow {{v_{cano}}}  = \overrightarrow {OC} \)

Ta có: \(\overrightarrow {{v_{cano}}}  = \overrightarrow {{v_n}}  + \overrightarrow v \), với \(\overrightarrow v \) là vectơ vận tốc riêng của cano.

Gọi B là điểm sao cho \(\overrightarrow v  = \overrightarrow {OB} \) thì OACB là hình bình hành.

 

Vì tàu chuyển động theo hướng \(S{15^o}E\) nên vectơ \(\overrightarrow {OC} \) tạo với hướng Nam (tia OS) góc \({15^o}\) và tạo với hướng Đông (tia OE) góc \({90^o} - {15^o} = {75^o}\).

Mà nước trên sông chảy về hướng đông nên vectơ \(\overrightarrow {OA} \) cùng hướng với vectơ \(\overrightarrow {OE} \)

Do đó góc tạo bởi vectơ \(\overrightarrow {OC} \) và vectơ \(\overrightarrow {OA} \) là \({75^o}\)

Xét tam giác OAC ta có:

\(OA = \;|\overrightarrow {{v_n}} |\; = 3\); \(OC = \;|\overrightarrow {{v_{cano}}} |\; = 20\) và \(\widehat {AOC} = {75^o}\)

Áp dụng định lí cosin tại đỉnh O ta được:

\(\begin{array}{l}A{C^2} = O{A^2} + O{C^2} - 2.OA.OC.\cos \widehat {AOC}\\ \Leftrightarrow A{C^2} = {3^2} + {20^2} - 2.3.20.\cos {75^o} \approx 378\\ \Leftrightarrow OB = AC \approx 19,44\end{array}\)

Vậy vận tốc riêng của cano là 19,44 km/h

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

Sắp xếp các cân nặng theo thứ tự không giảm, ta được dãy:

50; 52; 52; 54; 54; 56; 56; 57; 58; 58; 59; 61; 61; 62; 64; 65; 66; 67; 68; 69.

+) Vì cỡ mẫu \(n = 20\), là số chẵn, nên giá trị tứ phân vị thứ hai là \({Q_2} = \frac{1}{2}\left( {58 + 59} \right) = 58,5\)

+) Tứ phân vị thứ nhất là trung vị của mẫu: 50; 52; 52; 54; 54; 56; 56; 57; 58; 58.

Do đó \({Q_1} = \frac{1}{2}(54 + 56) = 55\)

+) Tứ phân vị thứ nhất là trung vị của mẫu: 59; 61; 61; 62; 64; 65; 66; 67; 68; 69.

Do đó \({Q_3} = \frac{1}{2}(64 + 65) = 64,5\)

Vậy 3 ngưỡng cân nặng để phân nhóm là: 55kg; 58,5 kg; 64,5 kg.