Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do \(f\left(x\right)=ax^4+bx^3+cx^2+dx+e\) có 4 nghiệm pb \(x_1;x_2;x_3;x_4\)
\(\Rightarrow f\left(x\right)=a\left(x-x_1\right)\left(x-x_2\right)\left(x-x_3\right)\left(x-x_4\right)\)
Ta có:
\(f'\left(x\right)=a\left[\left(x-x_1\right)\left(x-x_2\right)\left(x-x_3\right)+\left(x-x_2\right)\left(x-x_3\right)\left(x-x_4\right)+\left(x-x_1\right)\left(x-x_3\right)\left(x-x_4\right)+\left(x-x_1\right)\left(x-x_2\right)\left(x-x_4\right)\right]\)
\(\Rightarrow\left\{{}\begin{matrix}f'\left(x_1\right)=a\left(x_1-x_2\right)\left(x_1-x_3\right)\left(x_1-x_4\right)\\f'\left(x_2\right)=a\left(x_2-x_1\right)\left(x_2-x_3\right)\left(x_2-x_4\right)\\f'\left(x_3\right)=a\left(x_3-x_1\right)\left(x_3-x_2\right)\left(x_3-x_4\right)\\f'\left(x_4\right)=a\left(x_4-x_1\right)\left(x_4-x_2\right)\left(x_4-x_3\right)\end{matrix}\right.\)
Mà tiếp tuyến tại A và B vuông góc \(\Leftrightarrow f'\left(x_1\right).f'\left(x_2\right)=-1\) (1)
Do \(x_1;x_2;x_3;x_4\) lập thành 1 CSC, giả sử công sai của CSC là \(d\)
\(\Rightarrow\left\{{}\begin{matrix}x_2=x_1+d\\x_3=x_1+2d\\x_4=x_1+3d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}f'\left(x_1\right)=a.\left(-d\right).\left(-2d\right).\left(-3d\right)=-6ad^3\\f'\left(x_2\right)=a.d.\left(-d\right).\left(-2d\right)=2ad^3\\f'\left(x_3\right)=a.2d.d.\left(-d\right)=-2ad^3\\f'\left(x_4\right)=a.3d.2d.d=6ad^3\end{matrix}\right.\)
Thế vào (1): \(-12a^2d^6=-1\Leftrightarrow12a^2d^6=1\)
\(\Rightarrow f'\left(x_3\right)+f'\left(x_4\right)=4ad^3\)
\(\Rightarrow S=\left(4ad^3\right)^{2020}=\left(16a^2d^6\right)^{1010}=\left(\dfrac{4}{3}.12a^2d^6\right)^{1010}=\left(\dfrac{4}{3}\right)^{1010}\)
Bài gì mà dễ sợ :(
Mọi người không thích giúp đỡ, chỉ muốn lấy điểm, web học hiểu toán lại biến thành tựu trò chơi.
Đúng là mất thời gian, luống công mà.
b, \(J=lim_{x\rightarrow0}\left(\cos x\right)^{\frac{1}{x^2}}\)
Câu 2:
\(f\left(x\right)=\frac{x+2}{x^3+1}\)
Xét \(g\left(x\right)=\frac{1}{x^2}\Rightarrow\lim\limits_{x\rightarrow+\infty}\frac{f\left(x\right)}{g\left(x\right)}=\lim\limits_{x\rightarrow+\infty}\frac{x^2\left(x+2\right)}{x^3+1}=1\) hữu hạn
\(\Rightarrow\int\limits^{+\infty}_1f\left(x\right)dx\) và \(\int\limits^{+\infty}_1g\left(x\right)dx\) cùng hội tụ hoặc phân kì
Mà \(\int\limits^{+\infty}_1\frac{dx}{x^2}\) hội tụ (do \(\alpha=2>1\))
\(\Rightarrow\) B là tích phân hội tụ
Hoặc sử dụng vô cùng tương đương: \(\frac{x+2}{x^3+1}\sim\frac{x}{x^3}\sim\frac{1}{x^2}\)
Mà \(\int\limits^{+\infty}_1\frac{1}{x^2}dx\) hội tụ nên B hội tụ
Đặt \(\left\{{}\begin{matrix}x=8,97\\y=3,01\end{matrix}\right.\) và \(\left\{{}\begin{matrix}x_0=9\\y_0=3\end{matrix}\right.\) \(\Rightarrow X\left(x;y\right)=arctan\frac{\sqrt{x}}{y}\)
\(\left\{{}\begin{matrix}\Delta_x=-0,03\\\Delta_y=0,01\end{matrix}\right.\)
\(X\left(x_0;y_0\right)=arctan\frac{\sqrt{9}}{3}=\frac{\pi}{4}\)
\(X'_x=\frac{\left(\frac{\sqrt{x}}{y}\right)_x'}{\frac{x}{y^2}+1}=\frac{y}{2\left(x+y^2\right)\sqrt{x}}\Rightarrow X'_x\left(x_0;y_0\right)=\frac{1}{36}\)
\(X'_y=\frac{\left(\frac{\sqrt{x}}{y}\right)'_y}{\frac{x}{y^2}+1}=\frac{-\sqrt{x}}{x+y^2}\Rightarrow X'_y\left(x_0;y_0\right)=-\frac{1}{6}\)
\(\Rightarrow X\approx X\left(x_0;y_0\right)+X'_x\left(x_0;y_0\right)\Delta x+X'_y\left(x_0;y_0\right)\Delta y\)
\(\Rightarrow X\approx\frac{\pi}{4}+\frac{1}{36}.\left(-0,03\right)-\frac{1}{6}.\left(0,01\right)=\frac{\pi}{4}-\frac{1}{400}\)
\(f'\left(x\right)=cosx\)
\(f''\left(x\right)=-sinx\)
\(f^{\left(3\right)}\left(x\right)=-cosx\)
\(f^{\left(4\right)}\left(x\right)=sinx\)
Từ đó ta thấy được:
\(f^{\left(4k\right)}\left(x\right)=sinx\)
\(f^{\left(4k+1\right)}\left(x\right)=cosx\)
\(f^{\left(4k+2\right)}\left(x\right)=-sinx\)
\(f^{\left(4k+3\right)}\left(x\right)=-cosx\)
\(\Rightarrow f^{\left(4k\right)}\left(x\right)+f^{\left(4k+1\right)}\left(x\right)+f^{\left(4k+2\right)}\left(x\right)+f^{\left(4k+3\right)}\left(x\right)=0\)
\(\Rightarrow S=f^{\left(2017\right)}\left(x\right)+f^{\left(2018\right)}\left(x\right)+f^{\left(2019\right)}\left(x\right)\)
(Toàn bộ phần tổng đằng trước nhóm thành các cụm 4 số và triệt tiêu)
\(S=f^{\left(4.504+1\right)}\left(x\right)+f^{\left(4.504+2\right)}\left(x\right)+f^{\left(4.504+3\right)}\left(x\right)\)
\(=cosx-sinx-cosx=-cosx\)
X=11 X/d=12