Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: x=1999
nên x+1=2020
Ta có: \(f\left(x\right)=x^{17}-2020\cdot x^{16}+2020\cdot x^{15}-2020\cdot x^{14}+...+2000x-1\)
\(=x^{17}-x^{16}\left(x+1\right)+x^{15}\left(x+1\right)-x^{14}\left(x+1\right)+...+x\left(x+1\right)-1\)
\(=x^{17}-x^{17}-x^{16}+x^{16}+x^{15}-x^{15}-x^{14}+...+x^2+x-1\)
\(=x-1\)
\(=1999-1=1998\)
f(x) = x^17 - 2000x^16 + 2000x^15 - 2000x^14 + ... + 2000x - 1
⇒ f(1999) = 1999^17 - 2000.1999^16 + 2000.1999^15 - 2000.1999^14 + ... + 2000.1999 - 1
⇒ 1999. f(1999) = 1999^18 - 1999.1999^17 + 2000.1999^16 - 2000.1999^15 + ... + 2000.1999^2 - 1999
⇒ 1999. f(1999) + f(1999) =(1999^18 - 1999.1999^17 + 2000.1999^16 - 2000.1999^15 + ... + 2000.1999^2 - 1999) + (1999^17 - 2000.1999^16 + 2000.1999^15 - 2000.1999^14 + ... + 2000.1999 - 1)
⇒ 2000. f(1999) = 19992−1
⇔ f(1999) =1999^2-1/2000(ghi dưới dạng phân số nha)
=> \(f\left(x\right)=x^{2014}-\left(2014+1\right)x^{2013}+\left(2014+1\right)x^{2012}+...-\left(2014+1\right)x+2014+1\)
Mà x = 2014
=> \(f\left(2014\right)=x^{2014}-\left(x+1\right)x^{2013}+\left(x+1\right)^{2012}+...-\left(x+1\right)x+x+1\)
\(=x^{2014}-x^{2014}+x^{2013}-x^{2013}-x^{2012}+....-x^2-x+x+1\)
\(=1\)
=> f(2014) = 1
với x=2014
=> f(x)=x2014-(x+1)x2013+(x+1)x2012-...-(x+1)x+(x+1)
=x2014-x2014-x2013+x2013+x2012-...-x2-x+x+1
=1
x=2014 => x+1 = 2015
f(2014) = x^17 - (x+1)x^16 + ... + (x+1)x -1
= x^17 - x^17 - x^16 + x^16 - x^15 - ... + x^2 + x -1
= x - 1 = 2013
Ta thấy \(x=2014\Rightarrow x+1=2015\)
Ta có: \(f\left(2014\right)=x^{17}-\left(x+1\right)x^{16}+\left(x+1\right)x^{15}-...+\left(x+1\right)x-1\)
\(=x^{17}-x^{17}-x^{16}+x^{16}+x^{15}-...+x^2+x-1\)
\(=x-1\)(1)
Thay x=2014 vào (1) ta được:
\(f\left(2014\right)=2014-1\)
\(=2013\)