K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
13 tháng 5 2021

Lời giải:

$f(1)=a+b+c=6$

$f(2)=4a+2b+c=16$

$f(12)-f(-9)=(144a+12b+c)-(81a-9b+c)$

$=63a+21b=21(3a+b)$

$=21[(4a+2b+c)-(a+b+c)]=21(16-6)=21.10=210$

AH
Akai Haruma
Giáo viên
28 tháng 11 2018

Thiếu đề bài em à.

7 tháng 12 2018

Thiếu chỗ nào vậy GV

đề sai rồi bạn

24 tháng 2 2018

xét f(x) =ax^2+bx+c

ta co f(1)=a+b+c=4, f(-1)=a-b+c=8

=> 2(a+c)=12

=> a+c=6 kết hợp a-c=-4 => a=1, c=5, kết hợp a+b+c=4 => b=-2

Vậy a=1, b=-2, c=5 là giá trị cần tìm.

17 tháng 3 2019

a=1

b=-2

c=5

5 tháng 1 2020

Bài 1:

Ta có:

\(3^{x+1}+3^{x+2}+3^{x+3}+...+3^{x+100}\)

\(=\left(3^{x+1}+3^{x+2}+3^{x+3}+3^{x+4}\right)+...+\left(3^{x+97}+3^{x+98}+3^{x+99}+3^{x+100}\right)\)

\(=3^x.\left(3+3^2+3^3+3^4\right)+...+3^{x+96}.\left(3+3^2+3^3+3^4\right)\)

\(=3^x.120+3^{x+4}.120+...+3^{x+96}.120\)

\(=120.\left(3^x+3^{x+4}+...+3^{x+96}\right)\)

\(120⋮120.\)

\(\Rightarrow120.\left(3^x+3^{x+4}+...+3^{x+96}\right)⋮120\)

\(\Rightarrow3^{x+1}+3^{x+2}+3^{x+3}+...+3^{x+100}⋮120\left(\forall x\in N\right)\left(đpcm\right).\)

Chúc bạn học tốt!

5 tháng 1 2020

Bài 2:

\(f\left(x_1.x_2\right)=f\left(x_1\right).f\left(x_2\right)\)

\(\Rightarrow f\left(4\right)=f\left(2.2\right)=f\left(2\right).f\left(2\right)=10.10=100\)

\(\Rightarrow f\left(16\right)=f\left(4.4\right)=f\left(4\right).f\left(4\right)=100.100=10000.\)

\(\Rightarrow f\left(32\right)=f\left(16.2\right)=f\left(16\right).f\left(2\right)=10000.10=100000.\)

Vậy \(f\left(32\right)=100000.\)

Chúc bạn học tốt!