Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\frac{x}{5}=\frac{y}{4}=k\)
\(\Rightarrow x=5k;y=4k\)
Ta có : \(x^2.y=100\)
\(\Rightarrow\left(5k\right)^2.4k=100\)
\(25k^2.4k=100\)
\(100k^3=100\)
\(k^3=1\)
\(\Rightarrow k=1\)
\(\Rightarrow x=5.1=5\)
\(y=4.1=4\)
Vậy x = 5 ; y = 4
Đặt \(\frac{x}{5}=\frac{y}{4}=k\Rightarrow\hept{\begin{cases}x=5k\\y=4k\end{cases}}\)
x2.y = 100
=> ( 5k )2 . 4k = 100
=> 25k2.4k = 100
=> 100k3 = 100
=> k3 = 1
=> k = 1
=> \(\hept{\begin{cases}x=5\cdot1=5\\y=4\cdot1=4\end{cases}}\)
Trả lời :
Có : \(\frac{x}{3}=\frac{y}{4}\), x + y = 14
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{y}{4}=\frac{x+y}{3+4}=\frac{14}{7}=2\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{3}=2\\\frac{y}{4}=2\end{cases}\Rightarrow\hept{\begin{cases}x=6\\y=8\end{cases}}}\)
tôi đã thử lòng các bạn nhưng ko có ai trả lời thì tớ giải cho nhé.
bài làm: Đặt \(\frac{x}{1998}=\frac{y}{1999}=\frac{z}{2000}=k\Rightarrow\)x =1998k ; y =1999k ; z =2000k
ta có : \(\left(x-z\right)^3=\left(1999k-2000k\right)^3\) = \(\left[k\cdot\left(1999-2000\right)\right]^3\)= \(k^3\cdot\left(-8\right)\) (1)
\(8\cdot\left(x-y\right)^2\cdot\left(y-z\right)\) = \(8\cdot\left(1998k-1999k\right)^2\cdot\left(1999k-2000k\right)\)
= \(8\cdot\left[k\cdot\left(1999-2000\right)\right]^2\cdot\left[k\cdot\left(1999-2000\right)\right]\)
= \(8\cdot k^2\cdot1\cdot k\cdot\left(-1\right)=k^3\cdot\left(-8\right)\) (2)
từ (1)và (2) \(\Rightarrow\left(x-z\right)^3=8\cdot\left(x-y\right)^2\cdot\left(y-z\right)\)
Có sai đề ko bạn phải là a.x=b.y=c.z chứ
Ta có a.x=b.y=c.z
=> \(x:\frac{1}{a}=y:\frac{1}{b}=z:\frac{1}{c}\)
\(\Rightarrow\frac{x}{\frac{1}{a}}=\frac{y}{\frac{1}{b}}=\frac{z}{\frac{1}{c}}=k\)
\(\Rightarrow\hept{\begin{cases}x=\frac{k}{a}\\y=\frac{k}{b}\\z=\frac{k}{c}\end{cases}}\)
Mà x.y.z =\(\frac{8}{abc}\)=>\(\frac{k}{a}.\frac{k}{b}.\frac{k}{c}=\frac{k^3}{abc}=\frac{8}{abc}\)
=>k\(^3\)=8
\(\Rightarrow\)k=2
\(\Rightarrow x=\frac{2}{a};y=\frac{2}{b};z=\frac{2}{c}\)
Học tốt
https://dethi.violet.vn/present/showprint/entry_id/11072330
bạn vào link trên sẽ có full đề và đáp án
p/s: nhớ k cho mình nha <3
\(\frac{x-2}{4}=-\frac{16}{2-x}\)
\(\Leftrightarrow\frac{x-2}{4}=\frac{16}{x-2}\)
\(\Leftrightarrow\left(x-2\right)^2=4.16=64\)
\(\Leftrightarrow\left(x-2\right)^2=8^2\)
\(\Leftrightarrow\left(x-2-8\right)\left(x-2+8\right)=0\)
\(\Leftrightarrow\left(x-10\right)\left(x+6\right)=0\Leftrightarrow\orbr{\begin{cases}x-10=0\\x+6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=10\\x=-6\end{cases}}}\)
\(x:y:z=3:4:5\)
\(\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\) và \(5z^2-3x^2-2y^2\)
Áp dụng tính chất của dãy tỉ số bằng nhau :
\(\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{5z^2-3x^2-2y^2}{5.5^2-3.3^2-2.4^2}=\frac{594}{66}=9\)
\(\Leftrightarrow\frac{x}{3}=9\Rightarrow x=9.3=27\)
\(\Leftrightarrow\frac{y}{4}=9\Rightarrow y=9.4=36\)
\(\Leftrightarrow\frac{z}{5}=9\Rightarrow z=9.5=45\)
Vậy x = 27 ; y = 36 ; z = 45
\(x+y=3\left(x-y\right)\)
\(\Rightarrow x+y=3x-3y\)
\(\Rightarrow y+3y=3x-x\)
\(\Rightarrow4y=2x\)
\(\Rightarrow2y=x\)
\(\Rightarrow x:y=2\)
\(\Rightarrow x+y=2y+y=2\)
\(\Rightarrow3y=2\)
\(\Rightarrow y=\frac{2}{3}\)
\(\Rightarrow x=\frac{4}{3}\)
Vậy \(x=\frac{4}{3};y=\frac{2}{3}\)
1/
Ta có \(\left(\frac{-1}{4}x^3y^4\right)\left(\frac{-4}{5}x^4y^3\right)\left(\frac{1}{2}xy\right)\)= \(\frac{1}{10}x^8y^8\ge0\)
Vậy ba đơn thức \(\frac{-1}{4}x^3y^4;\frac{-4}{5}x^4y^3;\frac{1}{2}xy\)không thể cùng có gt âm (đpcm)
TÍNH RỖ RA HẾT NHA THANKS
Đặt \(\frac{x}{4}=\frac{y}{3}=k\Rightarrow\hept{\begin{cases}x=4k\\y=3k\end{cases}}\)
xy = 12
<=> 4k.3k = 12
<=> 12k2 = 12
<=> k2 = 1
<=> k = ±1
Với k = 1 => x = 4 ; y = 3
Với k = -1 => x = -4 ; y = -3