K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2015

K khó đâu -_- Nếu muốn giải thì mình giải , nhưng xl mình k biết ghi phân số 
x/2 và y/3 = x/8 và y/12 
x/4 và t / 9 = x/8 và t/18
= > x/8 = y / 12  = t/ 18 
Rồi bạn cứ thế áp dụng kiến thức học để làm! GOODLUCK

22 tháng 11 2019

\(\frac{x-1}{3}=\frac{2y-1}{4}=\frac{z+2}{5}=\frac{y+t+3}{6}\)\(=\frac{x-1+2y-1+z+2-y-t-3}{3+4+5-6}\)

\(=\frac{x+y+z-t-3}{6}=\frac{1-3}{6}=-\frac{1}{3}\)

=> \(x-1=-1;2y-1=-\frac{4}{3};z+2=-\frac{5}{3};y+t+3=-2\)

=> \(x=0;y=-\frac{1}{6};z=-\frac{11}{3};t=-\frac{29}{6}\)

22 tháng 11 2019

Ta có x + y + z - t = 1

=> x + y + z = 1 + t

Áp dụng tính chất của dãy tỉ số bằng nhau ta có : 

\(\frac{x-1}{3}=\frac{2y-1}{4}=\frac{z+2}{5}=\frac{y+t+3}{6}=\frac{x-1+2y-1+z+2-y-t-3}{3+4+5-6}=\frac{-2}{6}=\frac{-1}{3}\)

=> x = 0 ; y = -1/6 ; z = -11/3 ; t = - 5/6 

16 tháng 6 2021

x : y : z : t = 2 : 3 : 4 : 5

\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{t}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{t}{5}=\frac{x+y+z+t}{2+3+4+5}=\frac{2}{7}\)

\(\Rightarrow x=\frac{2}{7}.2=\frac{4}{7};y=\frac{2}{7}.3=\frac{6}{7};z=\frac{2}{7}.4=\frac{8}{7};t=\frac{2}{7}.5=\frac{10}{7}\)

Ta có: \(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{4}\)

\(\Rightarrow\frac{x}{10}=\frac{y}{15};\frac{y}{15}=\frac{z}{12}\)

\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{12}\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{12}=\frac{x-y+z}{10-15+12}=\frac{49}{7}=7\)

\(\Rightarrow x=7.10=70;y=7.15=105;z=7.12=84\)

16 tháng 6 2021

Dù nhầm nhưng cũng thank nha

11 tháng 8 2016

1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)

\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)

=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)

=>\(x=3\cdot20=60\)

    \(y=3\cdot24=72\)

    \(z=3\cdot21=63\)

11 tháng 8 2016

3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)

=> \(x=1\cdot15=15\)

     \(y=1\cdot7=7\)

     \(z=1\cdot3=3\)

     \(t=1\cdot1=1\)

4 tháng 7 2019

+) Có: \(x:y:z:t=2:3:4:5\)

\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{t}{5}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{t}{5}=\frac{x+y+z+t}{2+3+4+5}=\frac{-42}{14}=-3\\ \Rightarrow\left\{{}\begin{matrix}\frac{x}{2}=-3\Rightarrow x=\left(-3\right)\cdot2=-6\\\frac{y}{3}=-3\Rightarrow y=\left(-3\right)\cdot3=-9\\\frac{z}{4}=-3\Rightarrow z=\left(-3\right)\cdot4=-12\\\frac{t}{5}=-3\Rightarrow t=\left(-3\right)\cdot5=-15\end{matrix}\right.\)

Vậy \(x=-6;y=-9;z=-12;t=-15\)

+) Gọi giá trị chung của tỉ lệ thức là k, ta có:

\(\frac{x}{4}=\frac{y}{7}=k\\ \Rightarrow x=4k;y=7k\)

Lại có: \(x\cdot y=112\)

\(\Rightarrow4k\cdot7k=112\\ 28k^2=112\\ \Rightarrow k^2=4\\ \Rightarrow k=\pm2\)

\(\Rightarrow\left\{{}\begin{matrix}x=4k=4\cdot\left(\pm2\right)=\pm8\\y=7k=7\cdot\left(\pm2\right)=\pm14\end{matrix}\right.\)

Vậy \(x=\pm8;y=\pm14\)

+) Gọi giá trị chung của tỉ lệ thức là h, ta có:

\(\frac{x}{3}=\frac{y}{4}=h\\ \Rightarrow x=3h;y=4h\)

Lại có: \(x\cdot y=48\)

\(\Rightarrow3h\cdot4h=48\\ 12h^2=48\\ \Rightarrow h^2=4\\ \Rightarrow h=\pm2\)

\(\Rightarrow\left\{{}\begin{matrix}x=3h=3\cdot\left(\pm2\right)=\pm6\\y=4h=4\cdot\left(\pm2\right)=\pm8\end{matrix}\right.\)

Vậy \(x=\pm6;y=\pm8\)

+) Gọi giá trị chung của tỉ lệ thức là g, ta có:

\(\frac{x}{2}=\frac{y}{-3}=g\\ \Rightarrow x=2g;y=-3g\)

\(xy=-54\)

\(\Rightarrow2g\cdot\left(-3g\right)=-54\\ -6g^2=-54\\ g^2=9\\ \Rightarrow g=\pm3\)

\(\Rightarrow\left\{{}\begin{matrix}x=2g=2\cdot\left(\pm3\right)=\pm6\\y=-3g=\left(-3\right)\cdot\left(\pm3\right)=\pm9\end{matrix}\right.\)

Vậy \(x=\pm6;y=\pm9\)

+) \(\left(x-2\right)^{2012}+\left|y^2-9\right|^{2014}=0\)

\(\Rightarrow\left\{{}\begin{matrix}\left(x-2\right)^{2012}=0\\\left|y^2-9\right|^{2014}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-2=0\\\left|y^2-9\right|=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\y^2-9=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\y^2=9\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\y=\pm3\end{matrix}\right.\)

Vậy \(x=2;y=\pm3\)

+) \(-0,16:x=-x:25\)

\(-0,16\cdot25=-x\cdot x\\ -x^2=-4\\ \Rightarrow x^2=4\\ \Rightarrow x=\pm2\)

Vậy \(x=\pm2\)