Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{x}{2}=\frac{y}{3}\) => \(\frac{2x}{4}=\frac{3y}{9}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{2x}{4}=\frac{3y}{9}=\frac{2x+3y}{4+9}=\frac{52}{13}=4\)
=> \(\hept{\begin{cases}\frac{x}{2}=4\\\frac{y}{3}=4\end{cases}}\) => \(\hept{\begin{cases}x=4.2=8\\y=4.3=12\end{cases}}\)
Vậy x = 8 và y = 12
Ta có\(\frac{x}{2}=\frac{y}{3}\)=>\(\frac{2x}{4}=\frac{3y}{9}\)=>\(\frac{2x+3y}{4+9}=\frac{52}{13}\)=4
=>x=4.2=8
y=4.3=12
Bài 1 bạn viết sai đề
2/Giải
\(\frac{x^2+y^2}{2^2+3^2}=\frac{52}{4+9}=\frac{52}{13}=4\)
Vậy:\(\frac{x}{2}=4\cdot2=8\)
\(\frac{y}{3}=4\cdot3=12\)
Vậy \(x=8\)
\(y=12\)
Nhớ k cho mình nha!
1/\(\frac{x}{3}=\frac{y}{16}\)và\(x-y=35\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{3}=\frac{y}{16}=\frac{x-y}{3-16}=\frac{35}{-13}\)
\(\frac{x}{3}=\frac{35}{-13}\)=>\(\frac{-105}{13}\)
\(\frac{y}{16}=\frac{35}{-13}\)=>\(\frac{-560}{13}\)
2/
\(\frac{x}{2}=\frac{y}{3}\)và\(x^2+y^2=52\)
THEO ĐỀ BÀI TA CÓ : \(\frac{x}{2}=\frac{x^2}{2^2}=\frac{x^2}{4}\)
\(\frac{y}{3}=\frac{y^2}{3^2}=\frac{y^2}{9}\)
ÁP DỤNG TÍNH CHẤT CỦA DÃY TỈ SỐ BẰNG NHAU:
\(\frac{x^2}{4}=\frac{y^2}{9}=\frac{x^2+y^2}{4+9}=\frac{52}{13}\)\(=4\)
\(\frac{x}{2}=4\)=>\(x=8\)
\(\frac{y}{3}=4\)=>\(y=12\)
HỌC TỐT ^^
a) Từ \(\frac{x}{2}=\frac{y}{3}\)(1)\(\Rightarrow\left(\frac{x}{2}\right)^2=\left(\frac{y}{3}\right)^2=\frac{x^2}{4}=\frac{y^2}{9}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{4}=\frac{y^2}{9}=\frac{x^2+y^2}{4+9}=\frac{52}{13}=4\)
\(\Rightarrow x^2=4.4=16\)\(\Rightarrow x=\pm4\)
\(y^2=4.9=36\)\(\Rightarrow y=\pm6\)
Từ (1) \(\Rightarrow\)x, y phải có cùng dấu
Vậy các cặp giá trị \(\left(x;y\right)\)thỏa mãn là \(\left(-4;-6\right)\), \(\left(4;6\right)\)
b) Đặt \(\frac{x}{2}=\frac{y}{3}=k\left(k\ne0\right)\)
\(\Rightarrow x=2k\), \(y=3k\)
\(\Rightarrow x.y=2k.3k=6k^2=54\)
\(\Rightarrow k^2=9\)\(\Rightarrow k=\pm3\)
+) Nếu \(k=-3\)\(\Rightarrow x=2.\left(-3\right)=-6\)và \(y=3.\left(-3\right)=-9\)
+) Nếu \(k=3\)\(\Rightarrow x=2.3=6\)và \(y=3.3=9\)
Vậy các cặp giá trị \(\left(x;y\right)\)thỏa mãn là \(\left(-6;-9\right)\), \(\left(6;9\right)\)
a) Đặt \(\frac{x}{2}=\frac{y}{3}=k\)
\(\Rightarrow x=2k;y=3k\)
Ta có : \(x^2+y^2=52\)
\(\Rightarrow\left(2k\right)^2+\left(3k\right)^2=52\)
\(4k^2+9k^2=52\)
\(13k^2=52\)
\(k^2=4\)
\(\Rightarrow k=2\)
\(\Rightarrow x=2.2=4\)
\(y=3.2=6\)
Vậy \(x=4;y=6\)
b) Đặt \(\frac{x}{2}=\frac{y}{3}=t\)
\(\Rightarrow x=2t;y=3t\)
Ta có : \(x.y=54\)
\(\Rightarrow2t.3t=54\)
\(6t^2=54\)
\(t^2=9\)
\(\Rightarrow t=3\)
\(\Rightarrow x=2.3=6\)
\(y=3.3=9\)
Vậy \(x=6;y=9\)
a) Ta có : \(\frac{x}{y}=\frac{6}{5}\) => \(\frac{x}{6}=\frac{y}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{6}=\frac{y}{5}=\frac{x+y}{6+5}=\frac{121}{11}=11\)
=> x = 11.6 = 66,y = 11.5 = 55
b) 4x = 5y => \(\frac{x}{5}=\frac{y}{4}\)=> \(\frac{2x}{10}=\frac{5y}{20}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{10}=\frac{5y}{20}=\frac{2x-5y}{10-20}=\frac{40}{-10}=-4\)
=> x = (-4).5 = -20 , y = (-4).4 = -16
c) Đặt \(\frac{x}{3}=\frac{y}{16}=t\Rightarrow\hept{\begin{cases}x=3t\\y=16t\end{cases}}\)
=> xy = 3t.16t = 48t2
=> 48t2 = 192
=> t2 = 4
=> t = \(\pm\)2
Với t = 2 thì x = 3.2 = 6,y = 16.2 = 32
Với t = -2 thì x = -6,y = -32
d) \(\frac{x}{-3}=\frac{y}{7}\)
=> \(\frac{x^2}{9}=\frac{y^2}{49}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x^2}{9}=\frac{y^2}{49}=\frac{x^2-y^2}{9-49}=\frac{-360}{-40}=9\)
=> x2 = 9.9 = 81 => x = \(\pm\)9
y2 = 9.49 = 441 => y = \(\pm\)21
Câu e,f tương tự
Ta có:
\(\frac{x}{2}=\frac{y}{3}.\)
\(\Rightarrow\frac{x^2}{4}=\frac{y^2}{9}\) và \(x^2+y^2=52.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x^2}{4}=\frac{y^2}{9}=\frac{x^2+y^2}{4+9}=\frac{52}{13}=4.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{x^2}{4}=4\Rightarrow x^2=16\Rightarrow x=4\left(vìx>0\right)\\\frac{y^2}{9}=4\Rightarrow y^2=36\Rightarrow y=6\left(vìy>0\right)\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(4;6\right).\)
Chúc bạn học tốt!
ta có:
\(\frac{x}{3}=\frac{y}{2}=\frac{x^2}{3^2}=\frac{y^2}{2^2}\)
áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{3^2}=\frac{y^2}{2^2}=\frac{52}{13}=4\)
=> \(\frac{x^2}{3^2}=4\Rightarrow x^2=4\cdot3^2=36\Rightarrow x=\sqrt{36}=6\)
=> \(\frac{y^2}{2^2}=4\Rightarrow y^2=4\cdot2^2=16\Rightarrow y=\sqrt{16}=4\)
a/ \(\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{6}=\frac{y}{4}\) ; Suy ra \(\frac{x}{6}=\frac{y}{4}=\frac{z}{5}\) hay \(\frac{-x}{-6}=\frac{-y}{-4}=\frac{z}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{-x}{-6}=\frac{-y}{-4}=\frac{z}{5}=\frac{-x-y+z}{-6-4+5}=\frac{-10}{-5}=2\)
Suy ra : x = 2.6 = 12
y = 2.4 = 8
z = 2.5 = 10
b,c,d tương tự
e/ \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\) ; \(5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\)
Tới đây bạn làm tương tự a,b,c,d
f tương tự.
g/ \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\Leftrightarrow\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}\)
Bạn áp dụng dãy tỉ số bằng nhau là ra.
h/ Áp dụng dãy tỉ số bằng nhau :
\(\frac{12x-15y}{7}=\frac{20z-12x}{9}=\frac{15y-20z}{11}=\frac{12x-15y+20z-12x+15y-20z}{7+9+11}=0\)
Từ đó lại suy ra \(\begin{cases}12x=15y\\20z=12x\\15y=20z\end{cases}\)
Rút ra tỉ số và áp dụng dãy tỉ số bằng nhau.
Đặt \(\frac{x}{2}=\frac{y}{3}=k\Rightarrow\hept{\begin{cases}x=2k\\y=3k\end{cases}}\)
Khi đó x.y = 52
<=> 2k.3k = 52
=> 6k2 = 52
=> k2 = 52/6
=> k = \(\pm\sqrt{\frac{52}{6}}\)
Khi k = \(\sqrt{\frac{52}{6}}\Rightarrow\hept{\begin{cases}x=\sqrt{\frac{52}{6}}.2=\sqrt{\frac{104}{3}}\\y=\sqrt{\frac{52}{6}}.3=\sqrt{78}\end{cases}}\)
Khi k = \(-\sqrt{\frac{52}{6}}\Rightarrow\hept{\begin{cases}x=-\sqrt{\frac{52}{6}}.2=-\sqrt{\frac{104}{3}}\\x=-\sqrt{\frac{52}{6}}.3=-\sqrt{78}\end{cases}}\)
Đặt : \(\hept{\begin{cases}x=2k\\y=3k\end{cases}}\)
Ta có : \(xy=52\Leftrightarrow2k.3k=52\)
\(\Leftrightarrow6k^2=52\Leftrightarrow k^2=\frac{26}{3}\Leftrightarrow k=\pm\sqrt{\frac{26}{3}}\)
TH1 : k = \(\sqrt{\frac{26}{3}}\)
\(x=2.\sqrt{\frac{26}{3}}=\frac{2\sqrt{78}}{3}\); \(y=3.\sqrt{\frac{26}{3}}=\sqrt{78}\)
TH2 : k = \(-\sqrt{\frac{26}{3}}\)
\(x=2.\left(-\sqrt{\frac{26}{3}}\right)=-\frac{2\sqrt{78}}{3}\); \(y=3.\left(-\sqrt{\frac{26}{3}}\right)=-\sqrt{78}\)