K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2015

Áp dụng dãy tỉ só bằng nhau ta có  :

     \(\frac{x}{19}=\frac{y}{21}=\frac{2x}{38}=\frac{2x-y}{38-21}=\frac{34}{17}=2\)

=> x = 2.19 = 38 

=> y = 2.21 = 42 

28 tháng 9 2018

dễ vãi

29 tháng 9 2019

Vì \(\frac{x}{19}=\frac{y}{21}\)

\(\Rightarrow\frac{2x}{38}=\frac{y}{21}\)

Áp dụng tính chấy của  dãy tỉ số bằng nhau ta có: 

\(\frac{2x}{38}=\frac{y}{21}=\frac{2x-y}{38-21}=\frac{34}{17}=2\)

\(\Rightarrow\hept{\begin{cases}x=2.19=38\\y=2.21=42\end{cases}}\)

Vậy ...

29 tháng 9 2019

Ta có

\(\frac{x}{19}=\frac{y}{21}\Rightarrow\frac{2x}{38}=\frac{y}{21}\)

Ap dụng tính chất DTSBN ta có

\(\frac{2x}{38}=\frac{y}{21}=\frac{2x-y}{38-21}=\frac{34}{17}=2\)

\(+\frac{x}{19}=2\Rightarrow x=38\)

\(+\frac{y}{21}=2\Rightarrow y=42\)

24 tháng 5 2017

a)Vì \(\frac{x}{19}=\frac{y}{21}\Rightarrow\frac{2x}{38}=\frac{y}{21}\)

         Áp dụng tính chất dãy tỉ số bằng nhau ta được:

                \(\Leftrightarrow\frac{2x}{38}=\frac{y}{21}=\frac{2x-y}{38-21}=\frac{34}{17}=2\)

\(\Leftrightarrow\hept{\begin{cases}\frac{x}{19}=2\\\frac{y}{21}=2\end{cases}\Rightarrow\hept{\begin{cases}x=38\\y=42\end{cases}}}\)

b)Vì x + y + z =18

         Áp dụng tính chất dãy tỉ số bằng nhau ta được:

              \(\Leftrightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{2+3+4}=\frac{18}{9}=2\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=2\\\frac{y}{3}=2\\\frac{z}{4}=2\end{cases}\Rightarrow}\hept{\begin{cases}x=4\\y=6\\z=8\end{cases}}\)

c)\(2^x+2^{x+3}=144\)

\(\Leftrightarrow2^x+2^x.2^3=144\)

\(\Leftrightarrow2^x.\left(2^3+1\right)=144\)

\(\Leftrightarrow2^x.9=144\)

\(\Leftrightarrow2^x=16=2^4\)

          Vậy x=4

24 tháng 5 2017

a) \(\frac{x}{19}=\frac{y}{21}=\frac{2x}{38}\)

Áp dụng tính chất dãy tỉ số bằng nhau. ta có:

\(\frac{x}{19}=\frac{2x}{38}=\frac{y}{21}=\frac{2x-y}{38-21}=\frac{34}{17}=2\)

Từ \(\frac{x}{19}=2\Rightarrow x=2.19=38\)

\(\frac{y}{21}=2\Rightarrow y=2.21=42\)

Vậy x = 38 ; y=42

c) \(2^x+2^{x+3}=144\)

\(\Rightarrow2^x+2^x\times2^3=144\)

\(\Rightarrow2^x.\left(1+2^3\right)=144\)

\(\Rightarrow2^x.9=144\)

\(\Rightarrow2^x=144\div9=16=2^4\)

\(\Rightarrow x=4\)

Vậy x = 4

31 tháng 7 2016

Hỏi đáp Toán

31 tháng 7 2016

a.

\(\frac{x}{19}=\frac{y}{21}\Rightarrow\frac{2x}{38}=\frac{y}{21}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{2x}{38}=\frac{y}{21}=\frac{2x-y}{38-21}=\frac{14}{17}\)

\(\frac{2x}{38}=\frac{14}{17}\Rightarrow x=\frac{266}{17}\)

\(\frac{y}{21}=\frac{14}{17}\Rightarrow y=\frac{294}{17}\)

b.

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)

\(\frac{x^2}{9}=4\Rightarrow x=\pm6\)

\(\frac{y^2}{16}=4\Rightarrow y=\pm8\)

27 tháng 8 2017

a,\(\frac{x}{y}=\frac{7}{3}\Rightarrow\frac{x}{7}=\frac{y}{3}\Rightarrow\frac{5x}{35}=\frac{2y}{6}=\frac{5x-2y}{35-6}=\frac{87}{29}=3\)

=> x = 21; y = 9

b, \(\frac{x}{19}=\frac{y}{21}\Rightarrow\frac{2x}{38}=\frac{y}{21}=\frac{2x-y}{38-21}=\frac{34}{17}=2\)

=> x = 38; y = 42

27 tháng 8 2017

Dễ lém sao đăng z?

27 tháng 9 2017

a) \(\frac{x}{y}=\frac{7}{3}\Rightarrow\frac{x}{7}=\frac{y}{3}\)

Theo tính chất dãy tỉ số bằng nhau:

  \(\frac{x}{7}=\frac{y}{3}=\frac{5x-2y}{5.7-2.3}=\frac{87}{29}=3\)

=> x = 7 x 3 = 21 ; y = 3x3 =9

b) \(\frac{x}{19}=\frac{y}{21}=\frac{2x-y}{2.19-21}=\frac{34}{17}=2\)

=> \(x=19.2=38\) ; \(y=21.2=42\)

29 tháng 10 2016

A:

Đặt \(k=\frac{x}{4}=\frac{y}{7}\)

Ta có :

 \(\frac{x}{4}=\frac{y}{7}\Rightarrow\hept{\begin{cases}x=k.4\\y=k.7\end{cases}}\)

Theo bài ra ta có :

\(x.y=112\Rightarrow k.4.k.7=112\Rightarrow28.k^2=112\Rightarrow k^2=4\Rightarrow k=\text{±}2\)

TH1 : k=2

=> \(\hept{\begin{cases}x=2.3\\y=2.7\end{cases}\Rightarrow\hept{\begin{cases}x=6\\y=14\end{cases}}}\)

Th2 : k=-2

\(\Rightarrow\hept{\begin{cases}x=-2.3\\y=-2.7\end{cases}\Rightarrow\hept{\begin{cases}x=-6\\y=-14\end{cases}}}\)

còn câu b thì trong sách có đó

8 tháng 10 2020

a. Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{x}{7}=\frac{y}{13}=\frac{x+y}{7+13}=\frac{40}{20}=2\)

Suy ra :

+) \(\frac{x}{7}=2\Leftrightarrow x=14\)

+) \(\frac{y}{13}=2\Leftrightarrow y=26\)

Vậy x = 14 ; y = 26

b. \(\frac{x}{y}=\frac{17}{3}\Leftrightarrow\frac{x}{17}=\frac{y}{3}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{x}{17}=\frac{y}{3}=\frac{x+y}{17+3}=\frac{-60}{20}=-3\)

Suy ra :

+) \(\frac{x}{17}=-3\Leftrightarrow x=-51\)

+) \(\frac{y}{3}=-3\Leftrightarrow y=-9\)

Vậy x = - 51 ; y = - 9

c. Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{x}{19}=\frac{2x}{38}=\frac{y}{21}=\frac{2x-y}{38-21}=\frac{34}{17}=2\)

Suy ra :

+) \(\frac{x}{19}=2\Leftrightarrow x=38\)

+) \(\frac{y}{21}=2\Leftrightarrow y=42\)

Vậy x = 38 ; y = 42

d. Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)

Suy ra :

+) \(\frac{x^2}{9}=4\Leftrightarrow x^2=36=6^2\Leftrightarrow x=\pm6\)

+) \(\frac{y^2}{16}=4\Leftrightarrow y^2=64=8^2\Leftrightarrow y=\pm8\)

Vậy x =\(\pm\)6 ; y =\(\pm\)8

8 tháng 10 2020

a,AD t/c DTS bằng nhau ta có:

\(\frac{x}{7}=\frac{y}{13}=\frac{x+y}{7+13}=\frac{40}{20}=2\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{7}=2\Rightarrow x=14\\\frac{y}{13}=2\Rightarrow y=26\end{cases}}\)

b,\(\frac{x}{y}=\frac{17}{3}\Leftrightarrow\frac{x}{17}=\frac{y}{3}\)

AD t/c DTS bằng nhua ta có:

\(\frac{x}{17}=\frac{y}{3}=\frac{x+y}{17+3}=-\frac{60}{20}=-3\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{17}=-3\Rightarrow x=-51\\\frac{y}{3}=-3\Rightarrow y=-9\end{cases}}\)

c,\(\frac{x}{19}=\frac{y}{21}\Leftrightarrow\frac{2x}{38}=\frac{y}{21}\)

AD t/c DTS bằng nhau ta có:

\(\frac{2x}{38}=\frac{y}{21}=\frac{2x-y}{38-21}=\frac{34}{17}=2\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{19}=2\Rightarrow x=38\\\frac{y}{21}=2\Rightarrow x=42\end{cases}}\)

d,Đặt \(\frac{x^2}{9}=\frac{y^2}{16}=k\)

\(\Rightarrow x^2=9k;y^2=16k\)

\(\Rightarrow x^2+y^2=9k+16k=25k=100\)

\(\Rightarrow k=4\)

\(\Rightarrow\frac{x^2}{9}=4\Leftrightarrow x^2=36;\frac{y^2}{16}=4\Leftrightarrow y^2=64\)

\(\Rightarrow\hept{\begin{cases}x=\pm6\\y=\pm8\end{cases}}\)