Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{31}{3}+\frac{31}{15}+\frac{31}{35}+\frac{31}{63}+\frac{31}{99}+\frac{31}{143}=\frac{31}{1.3}+\frac{31}{3.5}+\frac{31}{5.7}+\frac{31}{7.9}+\frac{31}{9.11}+\frac{31}{11.13}\\ \)
\(=\frac{31}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}\right)\)
\(=\frac{31}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\right)\)
\(=\frac{31}{2}.\left(1-\frac{1}{13}\right)=\frac{31}{2}.\frac{12}{13}=\frac{31.6}{13}=\frac{186}{13}\)
\(\Rightarrow x-\frac{186}{13}=\frac{9}{13}\Leftrightarrow x=\frac{195}{13}=15\)
\(x-\left(\frac{31}{3}+\frac{31}{15}+\frac{31}{35}+\frac{31}{63}+\frac{31}{99}+\frac{31}{143}\right)=\)\(\frac{9}{13}\)(1)
Đặt \(A=\frac{31}{3}+\frac{31}{15}+\frac{31}{35}+\frac{31}{63}+\frac{31}{99}+\frac{31}{143}\)
\(A=31\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}\right)\)
\(\Rightarrow2A=31\left(\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+\frac{2}{99}+\frac{2}{143}\right)\)
\(2A=31\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}\right)\)
\(2A=31\left(2-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\right)\)
\(2A=31\left(2-\frac{1}{13}\right)\)
\(2A=31.\frac{25}{13}\)
\(2A=\frac{775}{13}\)
\(\Rightarrow A=\frac{775}{13}:2\)
\(A=\frac{775}{26}\)
Thay vào (1) ta có:
\(x-\frac{775}{26}=\frac{9}{13}\)
\(\Leftrightarrow x=\frac{9}{13}+\frac{775}{26}\)
\(\Leftrightarrow x=\frac{61}{2}\)
gọi số cần tìm là x. theo bài ra ta có:
\(\frac{19-x}{35+x}=\frac{1}{2}\)
\(2\times\left(19-x\right)=35+x\)
\(38-2\times x=35+x\)
\(3x=3\)
\(x=1\)
\(7-\left(11+x-13\right)\div2\frac{2}{3}=2\)
\(\left(11+x-13\right)\div2\frac{2}{3}=7-2\)
\(\left(11+x-13\right)\div2\frac{2}{3}=5\)
\(11+x-13=\frac{40}{3}\)
\(11+x=\frac{79}{3}\)
\(x=\frac{46}{3}\)
\(\left(X+\frac{1}{1.3}\right)+\left(X+\frac{1}{3.5}\right)+...+\left(X+\frac{1}{23.25}\right)=11.X+\)\(\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\right)\)
\(\Leftrightarrow12X+\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{23.25}\right)+11X\)\(+\frac{\left(1+\frac{1}{3}+...+\frac{1}{81}\right)-\left(\frac{1}{3}+\frac{1}{9}+...+\frac{1}{243}\right)}{2}\)
\(\Leftrightarrow X+\frac{1}{2}\times\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{23}+\frac{1}{23}-\frac{1}{25}\right)=\frac{242}{243}:2\)
\(\Leftrightarrow X+\frac{12}{25}=\frac{121}{243}\)
\(\Leftrightarrow X=\frac{109}{6075}\)
Vậy X=109/6075
Chắc Sai kết quả chứ công thức đúng nha!!!...
Fighting!!!...
Đặt:
\(A=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{23.25}\)
\(2A=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{23.25}=\frac{3-1}{1.3}+\frac{5-3}{3.5}+...+\frac{25-23}{23.25}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{23}-\frac{1}{25}=1-\frac{1}{25}=\frac{24}{25}\)
=> \(A=\frac{12}{25}\)
Đặt \(B=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}\)
\(3B=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}\)
=> \(3B-B=\left(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}\right)=1-\frac{1}{3^5}=\frac{242}{243}\)
=> \(2B=\frac{242}{243}\Rightarrow B=\frac{121}{243}\)
Giải phương trình:
\(\left(x+\frac{1}{1.3}\right)+\left(x+\frac{1}{3.5}\right)+...+\left(x+\frac{1}{23.25}\right)=11x+\left(\frac{1}{3}+\frac{1}{9}+...+\frac{1}{243}\right)\)
\(12x+\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{23.25}\right)=11x+\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{242}\right)\)
\(12x+\frac{12}{25}=11x+\frac{121}{243}\)
\(12x-11x=\frac{121}{243}-\frac{12}{25}\)
\(x=\frac{109}{6075}\)
Câu 1 :
= \(\frac{4}{5}:\frac{8}{39}.\frac{15}{13}=\frac{4}{5}.\frac{39}{8}.\frac{15}{13}=\frac{1}{5}.\frac{39}{2}.\frac{15}{13}=\frac{39}{10}.\frac{15}{13}\)
= \(\frac{3}{2}.\frac{3}{1}=\frac{9}{2}\)
Câu 2 :
Gọi 3 số chẵn liên tiếp lần lượt là : a,a+2,a+4
Theo đề bài :
a+(a+2)+(a+4) = 2018
=) a+a+2+a+4 = 2018
=) 3a+6 = 2018
=) 3a = 2018-6 = 2012
=) a = 2012:3 = \(\frac{2012}{3}\)
Vì a không phải số tự nhiên chẵn =) không tìm được 3 số chẵn liên tiếp có tổng = 2018
\(\frac{2}{3\times5}\times a+\frac{2}{5\times7}\times a+...+\frac{2}{13\times15}\times a=\frac{28}{15}\)
=> \(\left(\frac{2}{3\times5}+\frac{2}{5\times7}+...+\frac{2}{13\times15}\right)\times x=\frac{28}{15}\)
=> \(\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}\right)\times x=\frac{28}{15}\)
=> \(\left(\frac{1}{3}-\frac{1}{15}\right)\times x=\frac{28}{15}\)
=> \(\frac{4}{15}\times x=\frac{28}{15}\)
=> \(x=\frac{28}{15}:\frac{4}{15}\)
-> \(x=7\)
\(\frac{2}{3\times5}\times a+\frac{2}{5\times7}\times a+...+\frac{2}{13\times15}\times a=\frac{28}{15}\)
\(a\times\left(\frac{2}{3\times5}+\frac{2}{5\times7}+...+\frac{2}{13\times15}\right)=\frac{28}{15}\)
\(a\times\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}\right)=\frac{28}{15}\)
\(a\times\left(\frac{1}{3}-\frac{1}{15}\right)=\frac{28}{15}\)
\(a\times\frac{4}{15}=\frac{28}{15}\)
\(a=\frac{28}{15}:\frac{4}{15}\)
\(a=\frac{28}{15}\times\frac{25}{4}\)
\(a=\frac{28}{4}=7\)
Ta có \(\frac{x}{13}=\frac{35}{31}\)
<=>31x=13.35
<=>31x=455
<=>x=\(\frac{455}{31}\)
x.31 = 13.35
31x = 455
x = 455:31
Vậy x = 445/31
NHớ k cho mình nhé!