Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x-3}{2017}+\frac{x-2}{2018}=\frac{x-2018}{2}+\frac{x-2017}{3}\\\Leftrightarrow \left(\frac{x-3}{2017}-1\right)+\left(\frac{x-2}{2018}-1\right)=\left(\frac{x-2018}{2}-1\right)+\left(\frac{x-2017}{3}-1\right)\\\Leftrightarrow \frac{x-2020}{2017}+\frac{x-2020}{2018}=\frac{x-2020}{2}+\frac{x-2020}{3}\\ \Leftrightarrow\frac{x-2020}{2017}+\frac{x-2020}{2018}-\frac{x-2020}{2}-\frac{x-2020}{3}=0\\ \Leftrightarrow\left(x-2020\right)\left(\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2}-\frac{1}{3}\right)=0\\ \Leftrightarrow x-2020=0\left(Vi\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2}-\frac{1}{3}\ne0\right)\\ \Leftrightarrow x=2020\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{2020\right\}\)
\(\frac{x-3}{2017}+\frac{x-2}{2018}=\frac{x-2018}{2}+\frac{x-2017}{3}\)
\(\Leftrightarrow\) \(\frac{x-3}{2017}-1+\frac{x-2}{2018}-1=\frac{x-2018}{2}-1+\frac{x-2017}{3}-1\)
\(\Leftrightarrow\) \(\frac{x-2020}{2017}+\frac{x-2020}{2018}=\frac{x-2020}{2}+\frac{x-2020}{3}\)
\(\Leftrightarrow\) \(\frac{x-2020}{2017}+\frac{x-2020}{2018}-\frac{x-2020}{2}-\frac{x-2020}{3}=0\)
\(\Leftrightarrow\) (x - 2020)(\(\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2}-\frac{1}{3}\)) = 0
\(\Leftrightarrow\) x - 2020 = 0
\(\Leftrightarrow\) x = 2020
Vậy S = {2020}
Chúc bn học tốt!!
\(\frac{x-2}{2016}+\frac{x-3}{2017}+\frac{x-4}{2018}+3=0\\ \Leftrightarrow\left(\frac{x-2}{2016}+1\right)+\left(\frac{x-3}{2017}+1\right)+\left(\frac{x-4}{2018}+1\right)=0\\ \Leftrightarrow\frac{x+2014}{2016}+\frac{x+2014}{2017}+\frac{x+2014}{2018}=0\\ \Leftrightarrow\left(x+2014\right)\left(\frac{1}{2016}+\frac{1}{2017}+\frac{1}{2018}\right)=0\\ Vì\frac{1}{2016}+\frac{1}{2017}+\frac{1}{2018}\ne0\\ \Rightarrow x+2014=0\\ \Leftrightarrow x=-2014\\ Vậy...\)
\(\Leftrightarrow\frac{x-3}{2016}-1=\left(\frac{x-2}{2017}-1\right)+\left(\frac{x-1}{2018}-1\right)\)
\(\Leftrightarrow\frac{x-3-2016}{2016}=\frac{x-2-2017}{2017}+\frac{x-1-2018}{2018}\)
\(\Leftrightarrow\frac{x-2019}{2016}-\frac{x-2019}{2017}-\frac{x-2019}{2018}=0\)
\(\Leftrightarrow\left(x-2019\right)\left(\frac{1}{2016}-\frac{1}{2017}-\frac{1}{2018}\right)=0\)
Vì \(\frac{1}{2016}-\frac{1}{2017}-\frac{1}{2018}\ne0\) ( không tin cứ bấm máy tính mà xem =)) )
\(\Rightarrow x-2019=0\Rightarrow x=2019\)
À khác cái dấu nhưng đề phải là giải phương trình chứ
Đặt 2017-x=a => x-2018=-a-1 phương trình trở thành:
\(\frac{a^2+a\left(-a-1\right)+\left(a-1\right)^2}{a^2-a\left(-a-1\right)+\left(a-1\right)^2}=\frac{19}{49}\)
\(\Leftrightarrow\frac{a^2+a+1}{3a^2+3a+1}=\frac{19}{49}\)
\(\Leftrightarrow49\left(a^2+a+1\right)=19\left(3a^2+3a+1\right)\)
\(\Leftrightarrow49a^2+49a+49=57a^2+57a+19\)
\(\Leftrightarrow8a^2+8a-30=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=\frac{3}{2}\\a=-\frac{5}{2}\end{cases}\Rightarrow\orbr{\begin{cases}x=2015,5\\x=2019,5\end{cases}}}\)
Vậy......................
Chứng minh Nesbit 4 số rồi áp dụng nhé
\(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}=\frac{a^2}{a\left(b+c\right)}+\frac{b^2}{b\left(c+d\right)}+\frac{c^2}{c\left(d+a\right)}+\frac{d^2}{d\left(a+b\right)}\) (*)
Theo Cauchy - Schwarz dạng engel , ta có
(*) \(\ge\frac{\left(a+b+c+d\right)^2}{a\left(b+c\right)+b\left(c+d\right)+c\left(d+a\right)+d\left(a+b\right)}\)
\(=\frac{2\left(a+c\right)\left(b+d\right)+\left(a+c\right)^2+\left(b+d\right)^2}{\left(a+c\right)\left(b+d\right)+2ac+2bd}\ge\frac{2\left(a+c\right)\left(b+d\right)+4ac+4bd}{\left(a+c\right)\left(b+d\right)+2ac+2bd}=2\)
Đẳng thức xảy ra <=> a = c và b = d
Áp dụng bất đẳng thức Nesbit cho 4 số ,ta có
\(\frac{2018}{x+y}+\frac{x}{y+2017}+\frac{y}{2017+2018}+\frac{2017}{x+2018}\ge2\)
Đẳng thức xảy ra <=> y = 2018 , x = 2017
buithianhtho làm cách này mà ko có máy tính thì đến bao giờ ?
\(\dfrac{x-3}{2017}+\dfrac{x-2}{2018}+\dfrac{x-1}{2019}=3\)
\(\Leftrightarrow\dfrac{x-3}{2017}-1+\dfrac{x-2}{2018}-1+\dfrac{x-1}{2019}-1=3-1-1-1\)
\(\Leftrightarrow\dfrac{x-3-2017}{2017}+\dfrac{x-2-2018}{2018}+\dfrac{x-1-2019}{2019}=0\)
\(\Leftrightarrow\dfrac{x-2020}{2017}+\dfrac{x-2020}{2018}+\dfrac{x-2020}{2019}=0\)
\(\Leftrightarrow\left(x-2020\right)\left(\dfrac{1}{2017}+\dfrac{1}{2018}+\dfrac{1}{2019}\right)=0\)
Vì \(\dfrac{1}{2017}+\dfrac{1}{2018}+\dfrac{1}{2019}\ne0\)
\(\Leftrightarrow x-2020=0\)
\(\Leftrightarrow x=2020\)
Vậy....
\(\frac{x-3}{2017}\)+\(\frac{x-2}{2018}\)+\(\frac{x-1}{2019}\)=3
= 4074342(x-3)+4072323(x-2)+4070306(x-1)=24653843442
=07342x- 12223026+ 4072323x-8144646+4070306x- 4070306= 24653843442
12216971x- 24437978= 24653843442
12216971x=24653843442+24437978
12216971x= 24678281420
x= 2020
Ta có:\(\frac{x-2}{2017}+1+\frac{x-3}{2018}+1=\frac{x-4}{2019}+1+\frac{x-5}{2020}+1\)
\(\Rightarrow\frac{x+2015}{2017}+\frac{x+2015}{2018}-\frac{x+2015}{2019}-\frac{x+2015}{2020}=0\)
\(\Rightarrow\left(x+2015\right)\left(\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\right)=0\)
Mà \(\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}>0\)
\(\Rightarrow x+2015=0\Rightarrow x=-2015\)
\(S=\left\{-2015\right\}\)
\(\frac{x-3}{2017}-\frac{x-2}{2018}=\frac{x-2018}{2}+\frac{x-2017}{3}\)
\(\Leftrightarrow\frac{x-3}{2017}-1-\frac{x-2}{2018}-1=\frac{x-2018}{2}-1+\frac{x-2017}{3}-1\)
\(\Leftrightarrow\frac{x-2020}{2017}-\frac{x-2020}{2018}=\frac{x-2020}{2}+\frac{x-2020}{3}\)
\(\Leftrightarrow\frac{x-2020}{2017}-\frac{x-2020}{2018}-\frac{x-2020}{2}-\frac{x-2020}{3}=0\)
\(\Leftrightarrow\left(x-2020\right)\left(\frac{1}{2017}-\frac{1}{2018}-\frac{1}{2}-\frac{1}{3}\right)=0\)
\(\Leftrightarrow x-2020=0\Leftrightarrow x=2020\)