Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}\)
\(B=\frac{2015+2016+2017}{2016+2017+2018}\)
\(B=\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
Ta có:
\(\frac{2015}{2016}>\frac{2015}{2016+2017+2018}\)
\(\frac{2016}{2017}>\frac{2016}{2016+2017+2018}\)
\(\frac{2017}{2018}>\frac{2017}{2016+2017+2018}\)
Cộng vế theo vế, ta có:
\(\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
\(hay\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015+2016+2017}{2016+2017+2018}\)
\(\Rightarrow A>B\)
Vậy A > B
\(\frac{x+4}{2015}+\frac{x+3}{2016}=\frac{x+2}{2017}+\frac{x+1}{2018}\)
\(\Rightarrow\frac{x+4}{2015}+1+\frac{x+3}{2016}+1=\frac{x+2}{2017}+1+\frac{x+1}{2018}+1\)
\(\Rightarrow\frac{x+4+2015}{2015}+\frac{x+3+2016}{2016}=\frac{x+2+2017}{2017}+\frac{x+1+2018}{2018}\)
\(\Rightarrow\frac{x+2019}{2015}+\frac{x+2019}{2016}-\frac{x+2019}{2017}-\frac{x+2019}{2018}=0\)
\(\Rightarrow\left(x+2019\right)\left(\frac{1}{2015}+\frac{1}{2016}-\frac{1}{2017}-\frac{1}{2018}\right)=0\)
Vì \(\frac{1}{2015}+\frac{1}{2016}-\frac{1}{2017}-\frac{1}{2018}\ne0\)
=> x + 2019 = 0
=> x = -2019
Vậy x = -2019
Bài 1 : dễ bạn tự làm được :)
Bài 2 :
Ta có :
\(B=\frac{2015+2016+2017}{2016+2017+2018}=\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
Vì :
\(\frac{2015}{2016}>\frac{2015}{2016+2017+2018}\)
\(\frac{2016}{2017}>\frac{2016}{2016+2017+2018}\)
\(\frac{2017}{2018}>\frac{2017}{2016+2017+2018}\)
Nên \(\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
\(\Leftrightarrow\)\(\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015+2016+2017}{2016+2017+2018}\)
\(\Leftrightarrow\)\(A>B\)
Vậy \(A>B\)
Chúc bạn học tốt ~
Ta có : B = 2016 + 2017 + 2018 2015 + 2016 + 2017 = 2016 + 2017 + 2018 2015 + 2016 + 2017 + 2018 2016 + 2016 + 2017 + 2018 2017 Vì : 2016 2015 > 2016 + 2017 + 2018 2015 2017 2016 > 2016 + 2017 + 2018 2016 2018 2017 > 2016 + 2017 + 2018 2017 Nên 2016 2015 + 2017 2016 + 2018 2017 > 2016 + 2017 + 2018 2015 + 2016 + 2017 + 2018 2016 + 2016 + 2017 + 2018 2017 ⇔ 2016 2015 + 2017 2016 + 2018 2017 > 2016 + 2017 + 2018 2015 + 2016 + 2017 ⇔A > B Vậy A > B Chúc bạn học tốt ~
Ta có : \(B=\frac{2015+2016+2017}{2016+2017+2018}\) \(=\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
Mà \(\frac{2015}{2016}>\frac{2015}{2016+2017+2018}\)
\(\frac{2016}{2017}>\frac{2016}{2016+2017+2018}\)
\(\frac{2017}{2018}>\frac{2017}{2016+2017+2016}\)
Cộng vế theo vế, ta có :
\(\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015+2016+2017}{2016+2017+2018}\)
\(\Rightarrow A>B\)
Em chuyển sang cùng một vế rồi ghép cái đầu vói cái thứ 3 cái thứ 2 với cái cuối. :)Dùng quy đồng :)
\(Q=\frac{2015+2016+2017}{2016+2017+2018}=\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\)\(\frac{2017}{2016+2017+2018}\)
ta có :
\(\frac{2015}{2016}>\frac{2015}{2016+2017+2018}\)
\(\frac{2016}{2017}>\frac{2016}{2016+2017+2018}\)
\(\frac{2017}{2018}>\frac{2017}{2016+2017+2018}\)
nên \(P>Q\)
Q=2015+2016+2017/2016+2017+2018=+2018+2016/2016+2017+2018+2017/2016+2017+2018
vì 2015/2016>2015/2016+2017+2018[1]
2016/2017>2016+2017+2018[2]
2017/2018>2016+2017+2018[3]
từ [1] [2] [3] suy ra P>Q
có B=2015+2016+\(\frac{2017}{2016}\)+2017+2018
B=\(\frac{2015}{2015+2016+2017}\)+\(\frac{2016}{2016+2017+2018}\)+\(\frac{2017}{2016+2017+2018}\)
vì \(\frac{2015}{2016}\)>\(\frac{2015}{2016+2017+2018}\)
\(\frac{2016}{2017}\)>\(\frac{2016}{2016+2017+2018}\)
\(\frac{2017}{2018}\)>\(\frac{2017}{2016+2017+2018}\)
⇒A>B
Chúc bạn học tốt :")
Dễ thấy B<1.
\(A=\left(1-\frac{1}{2016}\right)+\left(1-\frac{1}{2017}\right)+\left(1-\frac{1}{2018}\right)\)\(=3-\left(\frac{1}{2016}+\frac{1}{2017}+\frac{1}{2018}\right)\)
\(\frac{1}{2016}+\frac{1}{2017}+\frac{1}{2018}< \frac{1}{3}+\frac{1}{3}+\frac{1}{3}=1\)
Vậy A>2.
Vậy A>B.
B = \(\frac{2015+2016+2017}{2016+2017+2018}=\frac{2016.3}{2017.3}=\frac{2016}{2017}\left(1\right)\)
Mà A = \(\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}.\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\)=> A > B.
Vậy A > B .
Bạn Dont look at me
Bạn nên làm theo bạn ấy
Bạn k đúng cho bạn ấy. Bởi vì bạn ấy làm đúng
Theo mk là vậy
ta có:
\(\frac{x-2016}{2015}+\frac{x-2017}{2016}-\frac{2018-x}{2017}=-3\)
\(\Leftrightarrow\left(\frac{x-2016}{2015}+1\right)+\left(\frac{x-2017}{2016}+1\right)+\left(\frac{x-2018}{2017}+1\right)=0\)
\(\Leftrightarrow\frac{x-1}{2015}+\frac{x-1}{2016}+\frac{x-1}{2017}=0\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}\right)=0\)
\(\Rightarrow x-1=0\Leftrightarrow x=1\)