Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\frac{x}{y+z+1}=\frac{y}{x+z+3}=\frac{z}{x+y-4}=\frac{x+y+z}{y+z+1+x+z+3+x+y-4}=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\)
=>\(x+y+z=\frac{1}{2};\frac{x}{y+z+1}=\frac{1}{2};\frac{y}{x+z+3}=\frac{1}{2};\frac{z}{x+y-4}=\frac{1}{2}\)
=>\(\hept{\begin{cases}y+z+1=2x\\x+z+3=2y\\x+y-4=2z\end{cases}}\Rightarrow\hept{\begin{cases}x+y+z+1=3x\\x+y+z+3=3y\\x+y+z-4=3z\end{cases}\Rightarrow\hept{\begin{cases}3x=\frac{1}{2}+1\\3y=\frac{1}{2}+3\\3z=\frac{1}{2}-4\end{cases}}}\Rightarrow\hept{\begin{cases}3x=\frac{3}{2}\\3y=\frac{7}{2}\\3z=\frac{-7}{2}\end{cases}}\)
đến đây dễ rồi
b, =>(x-18)(x+16)=(x+4)(x-17)
=>x2+16x-18x-288=x2-17x+4x-68
=>x2-2x-288-x2+13x+68=0
=>11x-220=0
=>11x=220
=>x=20
Đặt \(\frac{x-18}{x+4}=\frac{x-17}{x+16}=k\)
Suy ra: \(x-18=k\left(x+4\right)\Rightarrow x=\frac{4k+18}{1-k}\left(1\right)\\ x-17=k\left(x+16\right)\Rightarrow x=\frac{16k+17}{1-k}\left(2\right)\)
Từ (1) và (2) ta được: \(4k+18=16k+17,\) suy ra \(k=\frac{1}{12},x=20\)
Hôm nay cô giao bài nhìu, tui đăng nhìu, vất vả nhìu cho chú đấy
Dễ lắm bạn ạ
\(\frac{x-18}{x+4}=\frac{x-17}{x+16}\)
\(\Leftrightarrow\left(x-18\right)\left(x+16\right)=\left(x+4\right)\left(x-17\right)\)
\(\Leftrightarrow x^2+16x-18x-288=x^2+4x-17x-68\)
\(\Leftrightarrow x^2-2x-288=x^2-13x-68\)
\(\Leftrightarrow x^2-x^2-2x+13x=-68+288\)
\(\Leftrightarrow11x=220\)
\(\Leftrightarrow x=20\)
(x-18)(x+16)=(x+4)(x-17)
x2-2x--288=x2-13x-68
x2-x2-2x+13x-288+68=0
11x=220
x=220:11
x=20
a)\(\frac{1}{4}-\frac{1}{3}x=\frac{2}{5}-\frac{3}{2}x\)
\(\Leftrightarrow\)\(\frac{15-20x}{60}=\frac{24-90x}{60}\)
\(\Leftrightarrow15-20x=24-90x\)
\(\Leftrightarrow-20x+90x=24-15\)
\(\Leftrightarrow70x=9\)
\(\Leftrightarrow x=\frac{9}{70}\)
c) (1/2-1/6)*3^x+4-4*3^x=3^16-4*3^13
=1/3*3^x*3^4-4*3^x=3^13*3^3-4*3^13
=27*3^x-4*3^x=3^13*(27-4)
=3^x*(27-4)=3^13*(27-4)
=>x=13
Ta có: \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{4}=\frac{y}{6}\)
\(\frac{y}{2}=\frac{z}{3}\Rightarrow\frac{y}{6}=\frac{x}{9}\)
\(\Rightarrow\frac{x}{4}=\frac{y}{6}=\frac{z}{9}\Rightarrow\frac{x}{4}=\frac{2y}{12}=\frac{3z}{27}\)
Áp dụng t/c dãy tỉ số bằng nhau ,ta được:
\(\frac{x}{4}=\frac{y}{6}=\frac{z}{9}=\frac{x}{4}=\frac{2y}{12}=\frac{3z}{27}=\frac{x-2y+3z}{4-12+27}=1\)
Do đó: x=4
y=6
z=9
Vậy......
b) Vì \(\frac{x}{1}=\frac{y}{4}\Rightarrow\frac{x}{3}=\frac{y}{12}\)
\(\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{y}{12}=\frac{z}{16}\)
\(\Rightarrow\frac{x}{3}=\frac{y}{12}=\frac{z}{16}\)
\(\Rightarrow\frac{4x}{12}=\frac{y}{12}=\frac{z}{16}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{4x}{12}=\frac{y}{12}=\frac{z}{16}=\frac{4x+y-z}{12+12-16}=\frac{16}{8}=2\)
\(\Rightarrow\hept{\begin{cases}x=2.3=6\\y=2.12=24\\z=2.16=32\end{cases}}\)
Vậy
Ta có: \(\frac{x+y}{16}=\frac{x-y}{18}\)
=> 18(x + y) = 16(x - y)
=> 18x + 18y = 16x - 16y
=> 18x - 16x = -16y - 18y
=> 2x = -34y
=> x = -17y
Khi đó: \(\frac{-17y+y}{16}=\frac{-17y.y}{17}\)
=> \(\frac{-16y}{16}=-y^2\)
=> \(-y+y^2=0\)
=> y(y - 1) = 0
=> \(\orbr{\begin{cases}y=0\\y-1=0\end{cases}}\)
=> \(\orbr{\begin{cases}y=0\\y=1\end{cases}}\)
Với y = 0 => x = -17.0 = 0
y= 1 => x = -17 . 1 = -17
Vậy ....
\(\frac{x-18}{x+4}=\frac{x-17}{x+16}\Leftrightarrow\left(x-18\right)\left(x+16\right)=\left(x-17\right)\left(x+4\right)\)
\(\Leftrightarrow x^2+16x-18x-18\cdot16=x^2+4x-17x-17\cdot4\)
\(\Leftrightarrow-2x-288=-13x-68\Leftrightarrow-2x+13x=-68+288\)
\(\Leftrightarrow11x=220\Leftrightarrow x=\frac{220}{11}=20\)