\(\frac{x-1}{3}=\frac{y-2}{4}=\frac{z+7}{5}\) và x+y-z=8

\(\fr...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2016

Chắc câu hỏi là tìm x, y, z

1) \(\frac{x-1}{3}=\frac{y-2}{4}=\frac{z+7}{5}=\frac{\left(x-1\right)+\left(y-2\right)-\left(z+7\right)}{3+4-5}=\frac{x+y-z-10}{2}=\frac{8-10}{2}=-1\)

=> x-1 = 3.(-1) => x = -2

     y-2 = 4.(-1) => y = -2

     z+7 =5.(-1) => z = -12

2) Làm tương tự, nhưng trước khi cộng tử và mẫu các phân số với nhau thì nhân cả tử và mẫu phân số thứ nhất với 3; phân số thứ hai với 2 và phân số thứ ba với 4 để xuất hiện tổng 3x + 2y +4z.

\(\frac{3\left(x+1\right)}{3.3}=\frac{2\left(y+2\right)}{-4.2}=\frac{4\left(z-3\right)}{5.4}=\frac{3\left(x+1\right)+2\left(y+2\right)+4\left(z-3\right)}{9-8+20}=\frac{47-5}{21}=2\)

=> x + 1 = 3.2 => x = 5

     y+ 2 = -4.2 => y = -10

   z-3 =5.2 => z = 13

26 tháng 7 2017

Áp dụng tính chất của dãy tỉ số bằng nhau, ta  có :

\(\frac{x-1}{3}=\frac{y-2}{4}=\frac{z+7}{5}=\frac{\left(x-1\right)+\left(y-2\right)-\left(z+7\right)}{3+4-5}=\frac{-2}{2}=-1\)

\(\Rightarrow x=-2;y=-2;z=-12\)

26 tháng 7 2017

a)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{x+1}{3}=\frac{y+2}{4}=\frac{z+3}{5}=\frac{x+1+y+2+z+3}{3+4+5}=\frac{24}{12}=2\)

\(\Rightarrow x=5;y=6;z=7\)

21 tháng 8 2019

1, \(\frac{x}{2}=\frac{2y}{3}=\frac{3z}{4}\)\(\Leftrightarrow\frac{x}{2}=\frac{y}{\frac{3}{2}}=\frac{z}{\frac{4}{3}}=k\)\(\Leftrightarrow\hept{\begin{cases}x=2k\\y=\frac{3}{2}k\\z=\frac{4}{3}k\end{cases}}\)

Mà xyz = -108

\(\Leftrightarrow2k.\frac{3}{2}k.\frac{4}{3}k=-108\)

\(\Leftrightarrow4k^3=-108\)

<=> k3 = -27

<=> k = -3

\(\Leftrightarrow\hept{\begin{cases}x=2k=2.-3=-6\\y=\frac{3}{2}k=\frac{3}{2}.\left(-3\right)=\frac{-9}{2}\\z=\frac{4}{3}k=\frac{4}{3}.\left(-3\right)=-4\end{cases}}\)

2, \(\frac{x}{5}=\frac{y}{7}=\frac{z}{8}\)\(\Leftrightarrow\frac{2x}{10}=\frac{3y}{21}=\frac{4z}{32}\)

Áp dụng t/c dãy tỉ số bằng nhau, ta có: 

\(\frac{2x}{10}=\frac{3y}{21}=\frac{4z}{32}=\frac{2x+3y-4z}{10+21-32}=\frac{15}{-1}=-15\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{5}=-15\\\frac{y}{7}=-15\\\frac{z}{8}=-15\end{cases}}\Rightarrow\hept{\begin{cases}x=-75\\y=-105\\z=-120\end{cases}}\)

21 tháng 8 2019

3, 3x = 5y \(\Leftrightarrow\frac{x}{5}=\frac{y}{3}\)\(\Leftrightarrow\frac{x}{55}=\frac{y}{33}\)

    2y = 11z \(\Leftrightarrow\frac{y}{11}=\frac{z}{2}\) \(\Leftrightarrow\frac{y}{33}=\frac{z}{6}\)

\(\Rightarrow\frac{x}{55}=\frac{y}{33}=\frac{z}{6}\)\(\Rightarrow\frac{2x}{110}=\frac{5y}{165}=\frac{z}{6}\)

Áp dụng t/c dãy tỉ số bằng nhau, ta có:

\(\frac{2x}{110}=\frac{5y}{165}=\frac{z}{6}=\frac{2x+5y-z}{110+165-6}=\frac{34}{269}\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{55}=\frac{34}{269}\\\frac{y}{33}=\frac{34}{269}\\\frac{z}{6}=\frac{34}{269}\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{1870}{269}\\y=\frac{1122}{269}\\z=\frac{204}{269}\end{cases}}\)

4, \(\frac{x}{3}=\frac{2}{y}=\frac{z}{4}=k\)\(\Leftrightarrow\hept{\begin{cases}x=3k\\y=\frac{2}{k}\\z=4k\end{cases}}\)

Mà xyz = 240

<=> 3k . 2/k . 4k = 240

<=> 24k = 240

<=> k = 10

 \(\Leftrightarrow\hept{\begin{cases}x=3k=3.10=30\\y=\frac{2}{k}=\frac{2}{10}=\frac{1}{5}\\z=4k=4.10=40\end{cases}}\)

m: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{\dfrac{5}{2}}=\dfrac{z}{\dfrac{7}{4}}=\dfrac{3x+5y+7z}{3\cdot2+5\cdot\dfrac{5}{2}+7\cdot\dfrac{7}{4}}=\dfrac{123}{\dfrac{123}{4}}=4\)

Do đó: x=8; y=10; z=7

n: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)

Do đó: x=18; y=16; z=15

1 tháng 10 2016

a/ \(\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{6}=\frac{y}{4}\) ; Suy ra \(\frac{x}{6}=\frac{y}{4}=\frac{z}{5}\) hay \(\frac{-x}{-6}=\frac{-y}{-4}=\frac{z}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau : 

\(\frac{-x}{-6}=\frac{-y}{-4}=\frac{z}{5}=\frac{-x-y+z}{-6-4+5}=\frac{-10}{-5}=2\)

Suy ra : x = 2.6 = 12

y = 2.4 = 8

z = 2.5 = 10

b,c,d tương tự

e/ \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\) ; \(5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\)

Tới đây bạn làm tương tự a,b,c,d

f tương tự.

g/ \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\Leftrightarrow\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}\)

Bạn áp dụng dãy tỉ số bằng nhau là ra.

h/ Áp dụng dãy tỉ số bằng nhau : 

\(\frac{12x-15y}{7}=\frac{20z-12x}{9}=\frac{15y-20z}{11}=\frac{12x-15y+20z-12x+15y-20z}{7+9+11}=0\)

Từ đó lại suy ra \(\begin{cases}12x=15y\\20z=12x\\15y=20z\end{cases}\)

Rút ra tỉ số và áp dụng dãy tỉ số bằng nhau.

 

 

1 tháng 10 2016

/vip/tranthimyduyen

3 tháng 1 2018

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)

=> \(\frac{2\left(x-1\right)}{4}=\frac{3\left(y-2\right)}{9}=\frac{z-3}{4}\)

=> \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{\left(2x+3y-z\right)-2-6+3}{9}=\frac{50-5}{9}=\frac{45}{9}\)= 5

=> x-1/2 = 5 => x-1=5 => x=6

y-2/3 = 5 => y-2 = 15 => y =17

z-3/4=5 => z-3=20 => z=23

3 tháng 1 2018

Đặt x/2=y/3=z/5=k => x=2k,y=3k,z=5k

Ta có: xyz=2k.3k.5k=30k3 = 810 => k3 = 27 => k=3

=> x=2.3=6

y=3.3=9

z=5.3=15

12 tháng 7 2019

a

Đặt \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=k\)

\(\Rightarrow x=2k+1;y=3k+2;z=4k+3\)

Thay vào,ta được:

\(2\left(2k+1\right)+3\left(3k+2\right)-\left(4k+3\right)=50\)

\(\Leftrightarrow4k+2+9k+6-4k-3=50\)

\(\Leftrightarrow9k+5=50\)

\(\Leftrightarrow9k=45\)

\(\Leftrightarrow k=5\)

12 tháng 7 2019

\(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}=\frac{5x-5}{10}=\frac{3y+9}{12}=\frac{4z-20}{24}\)

\(=\frac{5x-5-3y-9-4z+20}{10-12-24}=\frac{\left(5x-3y-4z\right)+\left(20-5-9\right)}{26}=\frac{46+6}{26}=2\)

\(\Rightarrow x=2\cdot2+1=5\)

\(y=4\cdot2-3=5\)

\(z=2\cdot6+5=17\)

Câu c tương tự như câu 1

29 tháng 9 2016

Đăng từng bài thôi chứ bạn

29 tháng 9 2016

mất công lém

14 tháng 10 2017

a) Do \(2x=3y=-2z\) nên \(\frac{2x}{1}=\frac{3y}{1}=\frac{4z}{-2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta được:
\(\frac{2x}{1}=\frac{3y}{1}=\frac{4z}{-2}=\frac{2x-3y+4z}{1-1+\left(-2\right)}=\frac{48}{-2}=-24\)    ( do 2x - 3y + 4z = 48 )
Khi đó: 
\(\frac{2x}{1}=-24\)\(\Rightarrow2x=-24\)\(\Rightarrow x=\frac{-24}{2}=-12\)
\(\frac{3y}{1}=-24\)\(\Rightarrow3y=-24\)\(\Rightarrow y=\frac{-24}{3}=-8\)
\(\frac{4z}{-2}=-24\)\(\Rightarrow-2z=-24\)\(\Rightarrow z=\frac{-24}{-2}=12\)
Vậy x = -12 ; y = -8 ; z = 12

14 tháng 10 2017

Vũ Quang Vinh: tks bạn nhiềuu