Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
1) \(7^8.\left(-\dfrac{1}{7}\right)^8\)
\(=7^8.\left(\dfrac{1}{7}\right)^8\)
\(=7^8.\dfrac{1^8}{7^8}\)
\(=1\)
2) \(\left(\dfrac{4}{3}\right)^{10}.\left(-\dfrac{3}{4}\right)^{10}\)
\(=\left(\dfrac{4}{3}\right)^{10}.\left(\dfrac{3}{4}\right)^{10}\)
\(=\dfrac{4^{10}}{3^{10}}.\dfrac{3^{10}}{4^{10}}\)
\(=1\)
3) \(\left(-\dfrac{7}{2}\right)^{2006}.\left(-\dfrac{2}{7}\right)^{2006}\)
\(=\left(\dfrac{7}{2}\right)^{2006}.\left(\dfrac{2}{7}\right)^{2006}\)
\(=1\)
4) \(\left(-\dfrac{5}{13}\right)^{2007}.\left(\dfrac{13}{5}\right)^{2006}\)
\(=\left(\dfrac{5}{13}\right)^{2007}.\left(\dfrac{13}{5}\right)^{2006}\)
\(=\dfrac{5^{2007}.13^{2006}}{13^{2007}.5^{2006}}\)
\(=\dfrac{5}{13}\)
Vậy ...
\(=\frac{16}{5}.\frac{15}{16}-\left(\frac{3}{4}+\frac{2}{7}\right):\left(\frac{-29}{28}\right)\)
\(=3-\left(\frac{21}{28}+\frac{8}{28}\right):\left(\frac{-29}{28}\right)\)
\(=3-\left(\frac{29}{28}\right).\left(\frac{-28}{29}\right)\)
\(=3-\left(-1\right)\)
\(=4\)
b) \(=\left(\frac{1}{4}+\frac{25}{2}-\frac{5}{16}\right):\left(12-\frac{7}{12}:\left(\frac{3}{8}-\frac{1}{12}\right)\right)\)
\(=\left(\frac{4}{16}+\frac{200}{16}-\frac{5}{16}\right):\left(12-\frac{7}{12}:\left(\frac{3.3}{2.3.4}-\frac{2}{2.3.4}\right)\right)\)
\(=\left(\frac{199}{16}\right):\left(12-\frac{7}{12}:\left(\frac{9}{24}-\frac{2}{24}\right)\right)\)
\(=\frac{199}{16}:\left(12-\frac{7}{12}.\frac{24}{7}\right)\)
\(=\frac{199}{16}:\left(12-2\right)\)
\(=\frac{199}{16}:10\)
\(=\frac{199}{160}\)
c) \(\left(\frac{-3}{5}+\frac{5}{11}\right):\frac{-3}{7}+\left(\frac{-2}{5}+\frac{6}{5}\right):\frac{-3}{7}\)
\(\left(\frac{-33}{55}+\frac{25}{55}\right):\frac{-3}{7}+\left(\frac{4}{5}\right):\frac{-3}{7}\)
\(\left(\frac{-8}{55}\right).\frac{-7}{3}+\frac{4}{5}.\frac{-7}{3}\)
\(\frac{-7}{3}\left(\frac{-8}{55}+\frac{4}{5}\right)\)
\(\frac{-7}{3}.\frac{36}{55}=\frac{-84}{55}\)
c) \(\frac{0,375-0,3+\frac{3}{11}+\frac{3}{12}}{0,625-0,5+\frac{5}{11}+\frac{5}{12}}=\frac{3\left(0,125-0,1+\frac{1}{11}+\frac{1}{12}\right)}{5\left(0,123-0,1+\frac{1}{11}+\frac{1}{12}\right)}=\frac{3}{5}\)