\(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.......+\frac{1}{205}}{\frac{204}{1}+\frac{203}{2}+\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2019

\(\)Đặt \(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}...+\frac{1}{205}}{\frac{204}{1}+\frac{203}{2}+\frac{202}{3}+...+\frac{1}{204}}=\frac{B}{C}\)

Biến đổi C:

\(C=\left(\frac{204}{1}+1\right)+\left(\frac{203}{2}+1\right)+\left(\frac{202}{3}+1\right)+...+\left(\frac{1}{204}+1\right)-204\)

\(=205+\frac{205}{2}+\frac{205}{3}+..+\frac{205}{204}+\frac{205}{205}-205\)

\(=205.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{205}\right)\)

\(\Rightarrow A=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{205}}{205.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{205}\right)}=\frac{1}{205}\)

15 tháng 8 2020

\(A=\frac{1}{3^2}-\frac{1}{3^4}+\frac{1}{3^6}-\frac{1}{3^8}+...+\frac{1}{3^{202}}-\frac{1}{3^{204}}\)

\(9A=\frac{1}{3}-\frac{1}{3^2}+\frac{1}{3^4}-\frac{1}{3^6}+...+\frac{1}{3^{200}}-\frac{1}{3^{202}}\)

\(9A+A=\left(\frac{1}{3}-\frac{1}{3^{^2}}+...+\frac{1}{3^{200}}-\frac{1}{3^{202}}\right)+\left(\frac{1}{3^2}-\frac{1}{3^4}+...+\frac{1}{3^{202}}-\frac{1}{3^{204}}\right)\)

\(10A=\frac{1}{3}-\frac{1}{3^{204}}\)

A = (1/3 - 1/3204) : 10

Vậy A = (1/3 - 1/3204) : 10.

15 tháng 8 2020

A= \(\frac{1}{3^2}-\frac{1}{3^4}+\frac{1}{3^6}-\frac{1}{3^8}+...+\frac{1}{3^{202}}-\frac{1}{3^{204}}\left(1\right)\\ \)

   \(\frac{1}{3^2}A=\frac{1}{3^2}\left(\frac{1}{3^2}-\frac{1}{3^4}+\frac{1}{3^6}-\frac{1}{3^8}+...+\frac{1}{3^{202}}-\frac{1}{3^{204}}\right)\)

    \(\frac{1}{3^2}A=\frac{1}{3^4}-\frac{1}{3^6}+\frac{1}{3^8}-\frac{1}{3^{10}}+...+\frac{1}{3^{204}}-\frac{1}{3^{206}}\left(2\right)\)

Từ (1) và (2) vế theo vế ta có :\(A-\frac{1}{3^2}A=\frac{8}{9}A=\frac{1}{3^2}-\frac{1}{3^{206}}\)

        \(\Rightarrow A=\left(\frac{1}{3^2}-\frac{1}{3^{206}}\right):\frac{8}{9}\)

19 tháng 7 2016

a)\(\frac{2}{6}+\frac{2}{12}+...+\frac{2}{x\left(x+1\right)}=\frac{2}{2013}\)

\(\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{x\left(x+1\right)}=\frac{2}{2013}\)

\(2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2}{2013}\)

\(\frac{1}{2}-\frac{1}{x+1}=\frac{1}{2013}\)

đề sai

b)\(\frac{x+4}{2000}+1+\frac{x+3}{2001}+1=\frac{x+2}{2002}+1+\frac{x+1}{2003}+1\)

\(\frac{x+2004}{2000}+\frac{x+2004}{2001}=\frac{x+2004}{2002}+\frac{x+2004}{2003}\)

\(\frac{x+2004}{2000}+\frac{x+2004}{2001}-\frac{x+2004}{2002}-\frac{x+2004}{2003}=0\)

\(\left(x+2004\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)

\(x+2004=0\).Do \(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\ne0\)

\(x=-2004\)

c)\(\frac{x+5}{205}-1+\frac{x+4}{204}-1+\frac{x+3}{203}-1=\frac{x+166}{366}-1+\frac{x+167}{367}-1+\frac{x+168}{368}-1\)

\(\frac{x-200}{205}+\frac{x-200}{204}+\frac{x-200}{203}=\frac{x-200}{366}+\frac{x-200}{367}+\frac{x-200}{368}\)

\(\frac{x-200}{205}+\frac{x-200}{204}+\frac{x-200}{203}-\frac{x-200}{366}-\frac{x-200}{367}-\frac{x-200}{368}=0\)

\(\left(x-200\right)\left(\frac{1}{205}+\frac{1}{204}+\frac{1}{203}-\frac{1}{366}-\frac{1}{367}-\frac{1}{368}\right)=0\)

\(x-200=0\).Do\(\frac{1}{205}+\frac{1}{204}+\frac{1}{203}-\frac{1}{366}-\frac{1}{367}-\frac{1}{368}\ne0\)

\(x=200\)

d)chịu

13 tháng 8 2018

(: ko bít. tui giỏi tiếng anh nhưng ngu toán lắm

20 tháng 12 2016

Mình sửa chút: B>1

8 tháng 5 2018

1/3^2=1/3x3<1/2x3
1/4^2=1?4x4<1/3x4
.........................
1/60^2=1/60x60<1/59x60
suy ra dc:1/3^2+1/4^2+1/5^2+...+1/60^2 < 1/2x3+1/3x4+1/4x5+....+1/59x60=1/2-1/3+1/3-1/4+...+1/59-1/60.
=1/2-1/60( loại bỏ 1/3+1/3-1/4+...+1/59 )
=30/60-1/60=29/60
so sánh 29/60 với4/9 
tự làm nha bn
chúc bạn học tốt , thi tốt nha !!!!

30 tháng 3 2017

\(\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{100!}\)

=\(\frac{2-1}{2!}+\frac{3-2}{3!}+...+\frac{100-99}{100!}\)

\(=\frac{2}{2!}-\frac{1}{2!}+\frac{3}{3!}-\frac{2}{3!}+...+\frac{100}{100!}-\frac{99}{100!}\)

\(=1-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}-\frac{1}{4!}+...+\frac{1}{100!}-\frac{1}{99!}\)

\(=1-\frac{99}{100!}< 1\)

\(\Rightarrow\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{100!}< 1\left(đpcm\right)\)

Nếu đúng thì k mk nha, cảm ơn nhiều

13 tháng 3 2018

\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2013}-\frac{1}{2014}\)

\(=\left(1+\frac{1}{3}+...+\frac{1}{2013}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2014}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}+\frac{1}{2014}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2014}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}+\frac{1}{2014}-1-\frac{1}{2}-...-\frac{1}{1007}\)

\(=\frac{1}{1008}+\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2014}\)   (đpcm)