K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2019

Giả sử có \(\Delta ABC\)\(A=90^o;AH\) là đường cao

\(\sin\widehat{B}=\frac{AC}{BC};\cos\widehat{B}=\frac{AB}{BC};\tan\widehat{B}=\frac{AC}{AB};\cot\widehat{B}=\frac{AB}{AC}\)

\(\frac{\cot^2\widehat{B}-\cos^2\widehat{B}}{\cot^2\widehat{B}}+\frac{\sin\widehat{B}.\cos\widehat{B}}{\cot\widehat{B}}=\frac{\frac{AB^2}{AC^2}-\frac{AB^2}{BC^2}}{\frac{AB^2}{AC^2}}+\frac{\frac{AC}{BC}.\frac{AB}{BC}}{\frac{AB}{AC}}\)

\(=\frac{\frac{AB^2}{AC^2}}{\frac{AB^2}{AC^2}}-\frac{\frac{AB^2}{BC^2}}{\frac{AB^2}{AC^2}}+\frac{\frac{AC.AB}{BC^2}}{\frac{AB}{AC}}=1-\frac{AC^2}{BC^2}+\frac{AC^2}{BC^2}=1\)

27 tháng 6 2019

Mấy bài nè vận dụng hệ thức sin cos tan cot

AH
Akai Haruma
Giáo viên
27 tháng 6 2019

Lời giải:
Ta có:

\(\frac{\cot ^2a-\cos ^2}{\cot ^2a}+\frac{\sin a\cos a}{\cot a}=1-\frac{\cos ^2a}{\cot ^2a}+\frac{\sin a\cos a}{\cot a}\)

\(=1-\frac{\cos ^2a}{\frac{\cos ^2a}{\sin ^2a}}+\frac{\sin a\cos a}{\frac{\cos a}{\sin a}}=1-\sin ^2a+\sin ^2a=1\)

Ta có đpcm.

25 tháng 6 2019

\(VP=\frac{2\sin^2x-1}{\sin^4x}=\frac{\sin^2x+\sin^2x-1}{\sin^4x}=\frac{\sin^2x-\cos^2x}{\sin^4x}\)

\(=\frac{\left(\sin^2x-\cos^2x\right).1}{\sin^4x}=\frac{\left(\sin^2x-\cos^2x\right)\left(\sin^2x+\cos^2x\right)}{\sin^4x}=\frac{\sin^4x-\cos^4x}{\sin^4x}\)

\(=1-\cot^4x\)=VT

NV
25 tháng 6 2019

\(1-\frac{sin^3x}{sinx+cosx}-\frac{cos^3x}{sinx+cosx}=1-\frac{sin^3x+cos^3x}{sinx+cosx}\)

\(=1-\frac{\left(sinx+cosx\right)\left(sin^2x+cos^2x-sinx.cosx\right)}{sinx+cosx}=1-\left(1-sinxcosx\right)\)

\(=sinx.cosx\)

25 tháng 6 2019

sin3x - cos3x chứ bạn ?????

26 tháng 7 2016

Hỏi đáp Toán

27 tháng 7 2016

Hai câu cuối ko thấu rỏ bạn ơi

 

25 tháng 6 2019

\(\sin^2x+\cos^2x=1\Rightarrow\sin^2x-\cos^2x=1-2\cos^2x\)

\(\Rightarrow VT=\frac{\sin^2x-\cos^2x}{\sin^2x.\cos^2x}=\frac{\sin^4x-\cos^4x}{\sin^2x.\cos^2x}=\frac{\sin^2x}{\cos^2x}-\frac{\cos^2x}{\sin^2x}=\tan^2x-\cot^2x=VP\)

NV
22 tháng 6 2019

\(=cot^2x\left(cos^2x-1\right)+cos^2x+4\left(sin^2x+cos^2x\right)\)

\(=\frac{cos^2x}{sin^2x}\left(-sin^2x\right)+cos^2x+4\)

\(=-cos^2x+cos^2x+4=4\)

Khỏi tick