Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Làm tạm vào đây vậy
từ gt dễ dàng => \(ab+bc+ca\le3\)
\(\Rightarrow\frac{ab}{\sqrt{c^2+3}}\le\frac{ab}{\sqrt{c^2+ab+bc+ca}}=\frac{ab}{\sqrt{\left(c+a\right)\left(c+b\right)}}\)
Áp dụng cô si ta có
\(\frac{ab}{\sqrt{\left(c+a\right)\left(c+b\right)}}\le\frac{1}{2}\left(\frac{ab}{c+a}+\frac{ab}{c+b}\right)\)
Tương tự như vậy rồi ccộng vào nhá nhok
Ối,không ngờ đề gắt ~v
Theo Cô si,ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{3}{\sqrt[3]{xyz}}\ge\frac{3}{\frac{x+y+z}{3}}=\frac{9}{x+y+z}\)
Suy ra \(\frac{1}{x+y+z}\le\frac{1}{9}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
Áp dụng vào,ta có: \(\frac{1}{a+2b+3c}=\frac{1}{\left(a+b\right)+\left(b+c\right)+\left(b+c\right)}\)
\(\le\frac{1}{9}\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{b+c}\right)\)
Chứng minh tương tự và cộng theo vế:
\(VT\le\frac{1}{9}\left[\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)+2\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\right]\)
\(=\frac{1}{9}\left[3\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\right]=\frac{1}{3}\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)
Lại có BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\Rightarrow\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)
Áp dụng vào,ta có: \(VT\le\frac{1}{3}\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)
\(\le\frac{1}{12}\left[2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\right]=\frac{1}{6}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Nhân abc vào mỗi vế : \(VT.abc\le\frac{1}{6}\left(ab+bc+ca\right)=\frac{abc}{6}\)
Chia cả hai vế cho abc (vì a,b,c dương nên abc khác 0): \(VT\le\frac{1}{6}< \frac{3}{16}\)(đpcm)
Cũng không biết đúng hay sai nữa :v
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\frac{bc}{a+3b+2c}\le\frac{1}{9}\left(\frac{bc}{a+b}+\frac{bc}{b+c}+\frac{c}{2}\right)\)
\(\frac{ca}{b+3c+2a}\le\frac{1}{9}\left(\frac{ca}{b+c}+\frac{ca}{c+a}+\frac{a}{2}\right)\)
\(\frac{ab}{c+3a+2b}\le\frac{1}{9}\left(\frac{ab}{c+a}+\frac{ab}{a+b}+\frac{b}{2}\right)\)
Cộng theo vế của 3 BĐT ta có:
\(VT\le\frac{1}{9}\left(\frac{a+b+c}{2}+\frac{ca+ab}{a+c}+\frac{ab+bc}{a+b}+\frac{bc+ca}{b+c}\right)\)
\(=\frac{1}{9}\left(a+b+c+\frac{a+b+c}{2}\right)=1\)
Dấu "=" khi a=b=c=2
1.
\(P=\frac{a^4}{abc}+\frac{b^4}{abc}+\frac{c^4}{abc}\ge\frac{\left(a^2+b^2+c^2\right)^2}{3abc}=\frac{\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2\right)\left(a+b+c\right)}{3abc\left(a+b+c\right)}\)
\(P\ge\frac{\left(a^2+b^2+c^2\right).3\sqrt[3]{a^2b^2c^2}.3\sqrt[3]{abc}}{3abc\left(a+b+c\right)}=\frac{3\left(a^2+b^2+c^2\right)}{a+b+c}\)
Dấu "=" khi \(a=b=c\)
2.
\(P=\sum\frac{a^2}{ab+2ac+3ad}\ge\frac{\left(a+b+c+d\right)^2}{4\left(ab+ac+ad+bc+bd+cd\right)}\ge\frac{\left(a+b+c+d\right)^2}{4.\frac{3}{8}\left(a+b+c+d\right)^2}=\frac{2}{3}\)
Dấu "=" khi \(a=b=c=d\)
Nhận xét: \(b^3c-cb^3=0;b^2c-cb^2=0.\).Nên phân thức trở thành:
\(\frac{a^3b-ab^3+c^3a-ca^3}{a^2b-ab^2+c^2a-ca^2}=\frac{a^3\left(b-c\right)-a\left(b^3-c^3\right)}{a^2\left(b-c\right)-a\left(b^2-c^2\right)}\)
\(=\frac{a\left(b-c\right)\left\{a^2-\left(b^2-bc+c^2\right)\right\}}{a\left(b-c\right)\left\{a-\left(b+c\right)\right\}}\)
\(=\frac{a^2-\left(b^2-bc+c^2\right)}{a-\left(b+c\right)}=\frac{a^2-\left(b+c\right)^2+3bc}{a-\left(b+c\right)}\)
\(=a+b+c+\frac{3bc}{a-b-c}\).