Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ; \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áps dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\left(\frac{a+b}{c+d}\right)^2\)(1)
\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\)(2)
Từ (1) và (2) =>\(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)
vì a/b = c/d suy ra a + b/c+d = a/b = c/d suy ra a^2 / b^2 = c^2 / d^2 = (a+b/ c+d) ^2
áp dụng tính chất dãy tỉ số bằng nhau ta có :
a^2 / b^2 = c^2 / d^2 = ( a+b/c+d)^2 = a^2 + b^2 / c^2+ d^2 ( đpcm)
ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}.\frac{a}{b}=\frac{c}{d}.\frac{c}{d}\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}\)
\(\Rightarrow\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{c}{d}\Rightarrow\frac{a^2}{b^2}=\frac{ac}{bd}\)
\(\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{ac}{bd}\)
ADTCDTSBN
có: \(\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)
\(\Rightarrow\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\left(=\frac{a^2}{b^2}=\frac{c^2}{d^2}\right)\) ( đ p c m)
Ta có:
\(\frac{a}{b+c+d}>\frac{a}{a+b+c+d};\frac{b}{a+c+d}>\frac{b}{a+c+b+d};\frac{c}{b+c+d}>\frac{c}{a+b+c+d}\)
\(\frac{d}{a+b+c}>\frac{d}{a+b+c+d}\)
\(\Rightarrow\frac{a}{b+c+d}+\frac{b}{c+d+a}+\frac{c}{b+c+d}+\frac{d}{a+b+c}>\frac{a}{a+b+c+d}+\frac{b}{a+b+c+d}+\frac{c}{a+b+c+d}+\frac{d}{a+c+b+d}\)
\(\Rightarrow\frac{a}{b+c+d}+\frac{b}{c+d+a}+\frac{c}{b+c+d}+\frac{d}{a+b+c}>\frac{a+b+c+d}{a+b+c+d}=1\left(1\right)\)
Vì \(\frac{a}{b+c+d}< 1\Rightarrow\frac{a}{b+c+d}< \frac{a+c}{b+c+a+d}\)
\(\frac{b}{c+d+a}< 1\Rightarrow\frac{b}{b+c}< \frac{b+a}{a+b+c+d}\)
\(\frac{c}{b+c+d}< 1\Rightarrow\frac{c}{b+c+d}< \frac{c+b}{a+b+c+d}\)
\(\frac{d}{a+b+c}< 1\Rightarrow\frac{d}{a+b+c}< \frac{d+b}{a+b+c+d}\)
\(\Rightarrow\frac{a}{b+c+d}+\frac{b}{c+d+a}+\frac{c}{b+c+d}+\frac{d}{a+b+c}< \frac{a+c}{a+b+c+d}+\frac{b+a}{a+b+c+d}+\frac{c+d}{a+b+c+d}+\frac{d+b}{a+b+c+d}\)
\(\Rightarrow\frac{a}{b+c+d}+\frac{b}{c+d+a}+\frac{c}{b+c+d}+\frac{d}{a+b+c}< \frac{2\left(a+b+c+d\right)}{a+b+c+d}=2\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow1< \frac{a}{b+c+d}+\frac{b}{c+d+a}+\frac{c}{b+c+d}+\frac{d}{a+b+c}< 2\)
Vậy a,b,c,d>0 thì \(1< \frac{a}{b+c+d}+\frac{b}{c+d+a}+\frac{c}{b+c+d}+\frac{d}{a+b+c}< 2\left(đpcm\right)\)
a/b=c/d=a/c=b/d=a+b/c+d=(a+b)^2/(c+d)^2=(a+b/c+d)^2 (1)
a/b=c/d=a/c=b/d=(a/c)^2=(b/d)^2=a^2/c^2=b^2/d^2=a^2+b^2/c^2+d^2 (2)
(1),(2)=> (a+b/c+d)^2=a^2+b^2/c^2+d^2
Đặt \(A=\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{60}\)
=> \(A=\left(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{60}\right)\)
Đặt A < (1/40+.....+1/40)+(1/60+1/60+...+1/60)
=>A<1/2+1/3=5/6<3/2
lớn hơn 11/15 cũng tương tự thôi bạn tự làm sẽ thú vị hơn đấy
k minh nha
\(\left(\frac{a+b}{c+d}\right)^2\) \(=\frac{a.a+b.b}{c\cdot c+d.d}\)\(=\frac{a^2+b^2}{c^2+d^2}\)
\(\Rightarrow\left(\frac{a+b}{c+d}\right)^2\) \(=\frac{a^2+b^2}{c^2+d^2}\)
Đề còn thiếu \(\frac{a}{b}=\frac{c}{d}\)
Giải:
Từ \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau:\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)
=>\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\left(\frac{a+b}{c+d}\right)^2\)
Ta lại áp dụng tính chất của dãy tỉ số bằng nhau: \(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}=\left(\frac{a+b}{c+d}\right)^2\)
Vậy ta có đpcm
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\left(1\right)\)
\(\frac{a^2}{c^2}=\frac{a}{c}\cdot\frac{a}{c}=\frac{a}{c}\cdot\frac{b}{d}=\frac{ab}{cd}\left(2\right)\)
Từ (1)(2) => đpcm
Cho \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}\Rightarrow\hept{\begin{cases}a^2=b^2k^2\\c^2=d^2k^2\end{cases}}}\)
Ta có: \(\frac{a^2+b^2}{c^2+d^2}=\frac{b^2k^2+b^2}{d^2k^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}\)
Lại có: \(\frac{a.b}{c.d}=\frac{bk.b}{dk.d}=\frac{b^2k}{d^2k}=\frac{b^2}{d^2}\)
Vậy \(\frac{a^2+b^2}{c^2+d^2}=\frac{a.b}{c.d}\left(ĐPCM\right)\)
\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
<=> a2cd + b2cd = abc2 + abd2
<=> a2cd - abd2 = abc2 - b2cd
<=> ad(ac - bd) = bc(ac - bd)
<=> ad = bc
<=> \(\frac{a}{b}=\frac{c}{d}\)