Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
Đặt \(\frac{a}{2019}\)= \(\frac{b}{2020}\)= \(\frac{c}{2021}\)= k
=> a = 2019k; b = 2020k; c = 2021k
M = 4(a-b).(b-c) - (c-a)
M = 4(2019k- 2020k). (2020k-2021k) - (2021k - 2019k)
M = 4.(-1)k.(-1)k - 2k
M = 4k2 - 2k
(Hình như mình thấy đề bạn có gì sai sai)
Đặt \(\frac{a}{2020}=\frac{b}{2021}=\frac{c}{2022}=k\Rightarrow\hept{\begin{cases}a=2020k\\b=2021k\\c=2022k\end{cases}}\)
Khi đó M = 4(a - b)(b - c) - (c - a)2
= 4(2020k - 2021k)(2021k - 2022k) - (2022k - 2020k)2
= 4(-k)(-k) - (2k)2
= 4k2 - 4k2 = 0
Vậy M = 0
Đặt \(\frac{a}{2020}=\frac{b}{2021}=\frac{c}{2022}=k\)( \(k\ne0\))
\(\Rightarrow a=2020k\); \(b=2021k\); \(c=2022k\)
Thay a, b, c vào biểu thức M ta có:
\(M=4\left(a-b\right)\left(b-c\right)-\left(c-a\right)^2\)
\(=4\left(2020k-2021k\right)\left(2021k-2022k\right)-\left(2022k-2020k\right)^2\)
\(=4.\left(-k\right).\left(-k\right)-\left(2k\right)^2=4k^2-4k^2=0\)
Vậy \(M=0\)
theo bài ra ta có
\(\frac{a^{2015}}{b^{2017}+c^{2019}}=\frac{b^{2017}}{a^{2015}+c^{2019}}=\frac{c^{2019}}{a^{2015}+b^{2017}}\)
=>\(\frac{a^{2015}}{b^{2017}+c^{2019}}+1=\frac{b^{2017}}{a^{2015}+c^{2019}}+1=\frac{c^{2019}}{a^{2015}+b^{2017}}+1\)
=> \(\frac{a^{2015}+b^{2017}+c^{2019}}{b^{2017}+c^{2019}}=\frac{a^{2015}+b^{2017}+c^{2019}}{a^{2015}+c^{2019}}=\frac{a^{2015}+b^{2017}+c^{2019}}{a^{2015}+b^{2017}}\)
- nếu a2015+ b2017 +c2019 = 0
=> b2017+ c2019 = -(a2015) (1)
=> a2015+ c2019= -(b2017) (2)
=> a2015+ b2017= -(c2019) (3)
thay 1, 2, 3 vào S ta có:
S = \(\frac{b^{2017}+c^{2019}}{a^{2015}}+\frac{a^{2015}+c^{2019}}{b^{2017}}+\frac{a^{2015}+b^{2017}}{c^{2019}}\)
=> S =\(\frac{-\left(a^{2015}\right)}{a^{2015}}+\frac{-\left(b^{2017}\right)}{b^{2017}}+\frac{-\left(c^{2019}\right)}{c^{2019}}\)
S = -1 + -1 + -1
S = -3
vậy S ko phụ thuộc vào giá trị a,b,c
- nếu a2015+b2017+c2019 khác 0
=> b2017+c2019 = a2015+c2019=a2015+b2017
=> b2017 = a2015 = c2019
=>S=\(\frac{b^{2017}+c^{2019}}{a^{2015}}+\frac{a^{2015}+c^{2019}}{b^{2017}}+\frac{a^{2015}+b^{2017}}{c^{2019}}=\frac{2a^{2015}}{a^{2015}}+\frac{2b^{2017}}{b^{2017}}+\frac{2c^{2019}}{c^{2019}}=2+2+2=6\)
VẬY S ko phụ thuộc vào các giá trị của a,b,c
từ 2 trường hợp trên => giá trị của biểu thức S ko phụ thuộc vào giá trị của a,b,c (đpcm)
\(\frac{2\left|2018x-2019\right|+2019}{\left|2018x-2019\right|+1}\)
\(=\frac{\left(2\left(\left|2018x-2019\right|+1\right)\right)+2017}{\left|2018x-2019\right|+1}\)
\(=2+\frac{2017}{\left|2018x-2019\right|+1}\)có giá trị lớn nhất
\(\Rightarrow\frac{2017}{\left|2018x-2019\right|+1}\)có giá trị lớn nhất
\(\Rightarrow\left|2018x-2019\right|+1\)có giá trị nhỏ nhất
Mà \(\left|2018x-2019\right|\ge0\)
\(\Rightarrow\left|2018x-2019\right|+1\ge1\)
Dấu "=" xảy ra khi và chỉ khi:
\(\left|2018x-2019\right|=0\)
\(\Leftrightarrow x=\frac{2019}{2018}\)
Vậy \(M_{MAX}=2019\)tại \(x=\frac{2019}{2018}\)
\(\frac{5^x+5^{x+1}+5^{x+2}}{31}=\frac{3^{2x}+3^{2x+1}+3^{2x+2}}{13}\)
\(\Rightarrow\frac{5^x\left(1+5+5^2\right)}{31}=\frac{3^{2x}\left(1+3+3^2\right)}{13}\)
\(\Rightarrow\frac{5^x\cdot31}{31}=\frac{3^{2x}\cdot13}{13}\)
\(\Rightarrow5^x=3^{2x}\)
Mà \(\left(5;3\right)=1\)
\(\Rightarrow x=2x=0\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{b+c+d}{a}=\frac{a+c+d}{b}=\frac{a+b+d}{c}=\frac{a+b+c}{d}=k\)
\(=\frac{b+c+d+a+c+d+a+b+d+a+b+c}{a+b+c+d}\)
= \(\frac{3b+3c+3a+3d}{a+b+c+d}=\frac{3\left(a+b+c+d\right)}{a+b+c+d}=3\)(Do a + b + c + d \(\ne\)0)
=> k = 3
Với k = 3 => M = (3 - 3)2019 = 0
ADTCCDTSBN Ta có
\(\frac{b+c+d}{a}+\frac{a+c+d}{b}+\frac{a+b+d}{c}+\frac{a+b+c}{d}\)
\(=\frac{b+c+d+a+c+d+a+b+d+a+b+c}{a+b+c+d}=3\)
\(=>k=3\)
Thay vào M Ta có:
\(M=\left(k-3\right)^{2019}=\left(3-3\right)^{2019}=0\)
\(=>M=0\)
P/S:Ko chắc~!!
Áp dụng TC của dãy tỉ số bằng nhau , ta có :
\(\frac{b+c+d}{a}=\frac{a+c+d}{b}=\frac{a+b+d}{c}=\frac{a+b+c}{d}\left(1\right)\)
\(=\frac{b+c+d+a+c+d+a+b+d+a+b+c}{a+b+c+d}\)
\(=\frac{3a+3b+3c+3d}{a+b+c+d}=\frac{3\left(a+b+c+d\right)}{a+b+c+d}=3\)
Mà \(\left(1\right)=k\Rightarrow k=3\)
Ta có : \(M=\left(k-3\right)^{2019}\)
\(\Leftrightarrow M=\left(3-3\right)^{2019}\)
\(\Leftrightarrow M=0\)
gọi a/2019=b/2020=c/2021 là x
\(\Rightarrow\)a=2019*x ;b=2020*x;c=2021*x
\(\Rightarrow\)M=4*(2019*x-2020*x)*(2020-2021)-(2021*x-2019*x)^2
\(\Rightarrow\)M=4*(-x)*(-x)-(2x)^2
\(\Rightarrow\)M=4*x^2-4*x^2
⇒M=0