Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{-9}{10}.\frac{5}{14}+\frac{1}{10}.\frac{-9}{2}+\frac{1}{7}.\frac{-9}{10}\)
\(=\frac{-9}{10}.\frac{5}{14}+\frac{-9}{10}.\frac{1}{2}+\frac{1}{7}.\frac{-9}{10}\)
\(=\frac{-9}{10}.\left(\frac{5}{14}+\frac{1}{2}+\frac{1}{7}\right)=\frac{-9}{10}.1=\frac{-9}{10}\)
= \(\frac{5\times\left(\frac{1}{7}+\frac{1}{3}-\frac{1}{9}\right)}{10\times\left(\frac{1}{7}+\frac{1}{3}-\frac{1}{9}\right)}\)
=\(\frac{5}{10}\)
=\(\frac{1}{2}\)
\(\frac{-9}{10}.\frac{5}{14}+\frac{1}{10}.\left(\frac{-9}{2}\right)+\frac{1}{7}.\frac{-9}{10}\)
\(=\frac{-9}{10}.\frac{5}{14}+\frac{1}{7}.\frac{-9}{10}+\frac{1}{10}.\left(\frac{-9}{2}\right)\)
\(=\frac{-9}{10}.\left(\frac{5}{14}+\frac{1}{7}\right)+\frac{1}{10}.\left(\frac{-9}{2}\right)\)
\(=\frac{-9}{10}.\frac{1}{2}+\frac{1}{10}.\left(\frac{-9}{2}\right)\)
\(=\left(\frac{-9}{10}+\frac{1}{2}\right)^2\)
\(=\left(\frac{-9}{10}+\frac{5}{10}\right)^2\)
\(=\left(\frac{-2}{5}\right)^2\)
\(=\frac{4}{25}\)
a ) Ta có :
\(\frac{9^{10}-4}{9^{10}-5}=\frac{9^{10}-5+1}{9^{10}-5}=1+\frac{1}{9^{10}-5}\)
\(\frac{9^{10}-2}{9^{10}-3}=\frac{9^{10}-3+1}{9^{10}-3}=1+\frac{1}{9^{10}-3}\)
Do \(\frac{1}{9^{10}-5}>\frac{1}{9^{10}-3}\)
\(\Rightarrow1+\frac{1}{9^{10}-5}>1+\frac{1}{9^{10}-3}\)
\(\Rightarrow\frac{9^{10}-4}{9^{10}-5}>\frac{9^{10}-2}{9^{10}-3}\)
b ) Ta có :
\(\frac{2.7^{10}-1}{7^{10}}=2-\frac{1}{7^{10}}\)
\(\frac{2.7^{10}+1}{7^{10}+1}=\frac{2.7^{10}+2-1}{7^{10}+1}=\frac{2\left(7^{10}+1\right)-1}{7^{10}+1}=2-\frac{1}{7^{10}+1}\)
Do \(\frac{1}{7^{10}}>\frac{1}{7^{10}+1}\)
\(\Rightarrow2-\frac{1}{7^{10}}< 2-\frac{1}{7^{10}+1}\)
\(\Rightarrow\frac{2.7^{10}-1}{7^{10}}< \frac{2.7^{10}+1}{7^{10}+1}\)
mk giải cho câu A rồi tự suy mấy câu khác nhé!
ta có : A = 10^8 + 2/10^8 - 1
=> A = 10^8 - 1 + 3/10^8 - 1
=> A = 1+ 3/10^8 - 1
B = 10^8/10^8 - 3
=> B = 10^8 - 3 + 3/10^8 - 3
=> B = 1+ 3/10^8 - 3
vì 3/10^8 - 1 < 3/10^8 - 3
=> 1 + 3/10^8 - 1 < 1 + 3/10^8 - 3
=> A < B
vậy A < B
cách này cô dạy mk đó
ta có : \(\frac{10^9+2}{10^9-1}=\frac{10^9}{10^9-3}\)
\(\Leftrightarrow\left(10^9+2\right)\left(10^9-3\right)=\left(10^9-1\right)10^9\)
\(\Leftrightarrow10^{18}-10^9.3+2.10^9-6=10^{18}-10^9\)
\(\Rightarrow10^{18}-10^9.3+2.10^9-6=10^{18}-\left(10^9.3-2.10^9+6\right)\)
\(=10^{18}-\left(10^9+6\right)\)
vì \(-10^9>-\left(10^9+6\right)\Rightarrow10^{18}-10^9>10^{18}-\left(10^9+6\right)\)
\(\Rightarrow A>B\)
Ta có: A=\(\frac{10^9+2}{10^9-1}=\frac{10^9-1+3}{10^9-1}=1+\frac{3}{10^9-1}\)
B=\(\frac{10^9}{10^9-3}=\frac{10^9-3+3}{10^9-3}=1+\frac{3}{10^9-3}\)
Mà \(\frac{3}{10^9-1}< \frac{3}{10^9-3}\Rightarrow1+\frac{3}{10^9-1}< 1+\frac{3}{10^9-3}\Rightarrow A< B\)
Vậy A<B
1/2+2/3+3/4+4/5+5/6+6/7+7/8+8/9+9/10x9/10
=9/10x(1/2+2/3)+(3/4+4/5)+(5/6+6/7)+(7/8+8/9)
=9/10x(1/3+3/5+5/7+7/9)
9/10x(1/3+3/5)+(5/7+7/9)
=9/10x1/5+5/9
9/50+5/9
=10
Bn Long làm đúng rồi bn nguyễn kim arica cứ làm theo cách đó là được .
Bn nào thấy đúng thì ủng hộ nha .
Đặt \(A=\frac{10^{2006}+9}{10^{2007}+9}\)
\(\Rightarrow10A=\frac{10^{2007}+90}{10^{2007}+9}=1+\frac{81}{10^{2007}+9}\)
\(\frac{10^{2007}+9}{10^{2008}+9}=B\)
\(\Rightarrow10B=\frac{10^{2008}+90}{10^{2008}+9}=1+\frac{81}{10^{2008}+9}\)
Vì\(10A>10B\Rightarrow A>B\)
\(\simeq0.11\)