K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2016

Ta có : \(\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)=2015.5\)

\(\Leftrightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}+\frac{a+b}{a+b}+\frac{a+c}{c+a}+\frac{b+c}{b+c}=2015.5\)

\(\Leftrightarrow Q+3=2015.5\Rightarrow Q=2015.5-3=10072\)

Ta có:

a+b-c/c = b+c-a/a = c+a-b/b

=>a+b-c/c + 2 = b+c-a/a +2 = c+a-b/b +2

=>a+b-c/c  + 2c/c =b+c-a/a +2a/a = c+a-b/b +2/b

=>a+b+c/c = a+b+c/a =a+b+c/b

* Nếu a+b+c=0 thì a= 0-b-c= -(b+c)

                           b= 0-a-c= -(a+c)

                           c= 0-b-a= -(b+a)

Thay a= -(b+c) ; b=-(a+c);c=-(b+a) vào B ta được

B=(1+b/a)(1+a/c)(1+c/b)=(a/a + b/a )(c/c +a/c)(b/b+c/b)=(a+b)/a * (a+c)/c * (c+b)/b

                                                                                =(-c)/a * (-b)/c * (-a)/b =-1

* Nếu  a+b+c\(\ne\)0 thì a=b=c

Khi đó

B=(1+b/a)(1+a/c)(1+c/b)=(1+1)(1+1)(1+1)=2*2*2=8

Vậy B=-1 hoặc B=8

nhớ k nha bạn

1 tháng 3 2018

B=1 hoặc B=8 nha!

11 tháng 3 2016

moi hoc lop 5

8 tháng 3 2016

Đề sai à:) Bạn bỏ cái số 1 ở đầu bài đi là mình ra rồi
 

8 tháng 3 2016

Kì vậy:

Hôm qua mình ra

a = 5

b = 1

c = 7

Mà kết quả ko đúng

3 tháng 3 2019

\(B=-\frac{3}{5}\left(\frac{3}{8}-2+\frac{5}{8}\right)\)

\(B=-\frac{3}{5}.\left(-1\right)=\frac{3}{5}\)

\(C=\frac{8}{5}.\frac{3}{4}-\left(\frac{11}{20}-\frac{1}{4}\right).\frac{7}{3}\)

\(C=\frac{6}{5}-\frac{3}{10}.\frac{7}{3}\)

\(C=\frac{6}{5}-\frac{7}{10}=\frac{1}{2}\)

HQ
Hà Quang Minh
Giáo viên
8 tháng 10 2023

a) Với \(\frac{m}{n} = \frac{{ - 5}}{6}\), giá trị của biểu thức là:

\(\begin{array}{l}A = \frac{{ - 2}}{3} - \left( {\frac{{ - 5}}{6} + \frac{{ - 5}}{2}} \right).\frac{{ - 5}}{8}\\A = \frac{{ - 2}}{3} - \frac{{-20}}{6}.\frac{{ - 5}}{8}\\A = \frac{{ - 2}}{3} - \frac{{ 25}}{{12}}\\A = \frac{{ - 33}}{{12}}\end{array}\)

b) Với \(\frac{m}{n} = \frac{5}{2}\) , giá trị của biểu thức là:

\(\begin{array}{l}A = \frac{{ - 2}}{3} - \left( {\frac{5}{2} + \frac{{ - 5}}{2}} \right).\frac{{ - 5}}{8}\\A = \frac{{ - 2}}{3} - 0.\frac{{ - 5}}{8} = \frac{{ - 2}}{3}\end{array}\)

c) Với \(\frac{m}{n} = \frac{2}{{ - 5}}\) , giá trị của biểu thức là:

\(\begin{array}{l}A = \frac{-2}{3} - \left( {\frac{2}{{ - 5}} + \frac{{ - 5}}{2}} \right).\frac{{ - 5}}{8}\\A = \frac{-2}{3} - \left( {\frac{{ - 4}}{{10}} + \frac{{ - 25}}{{10}}} \right).\frac{{ - 5}}{8}\\A = \frac{-2}{3} - \frac{{ - 29}}{{10}}.\frac{{ - 5}}{8}\\A = \frac{-2}{3} - \frac{{29}}{{16}}\\A = \frac{{-32}}{{48}} - \frac{{87}}{{48}}\\A = \frac{{ - 119}}{{48}}\end{array}\).

4 tháng 2 2020

Bài 1 :

Ta có : \(S=\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)

\(=\frac{a}{c}+\frac{b}{c}+\frac{b}{a}+\frac{c}{a}+\frac{c}{b}+\frac{a}{b}\)

\(=\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\)

Ta chứng minh BĐT \(\frac{x}{y}+\frac{y}{x}\ge2,\forall x,y>0\)

Thật vậy : BĐT \(\Leftrightarrow\frac{x}{y}+\frac{y}{x}-2=\frac{\left(x-y\right)^2}{xy}\ge0\) ( đúng )

Vậy \(\frac{x}{y}+\frac{y}{x}\ge2,\forall x,y>0\)

Áp dụng vào bài toán ta có : \(S\ge2+2+2=6\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

Vậy min \(S=6\) tại \(a=b=c\)

20 tháng 5 2017

\(A=-1-4=-5\)

\(B=\frac{4}{3}.\frac{15}{7}-16\)

\(B=\frac{20}{7}-16\)

\(B=\frac{-92}{7}\)

\(C=\frac{28}{15}.0,25.3+\left(\frac{8}{15}-\frac{1}{4}\right)\div1\frac{23}{24}\)

\(C=1,4+\frac{17}{60}\div\frac{47}{24}\)

\(C=1,4+\frac{34}{235}\)

\(C=\frac{363}{235}\)

20 tháng 5 2017

\(A=\frac{-15}{8}+\frac{7}{8}-4\)

\(=-1-4=-5\)

\(B=\left(4-2\frac{2}{3}\right).2\frac{1}{7}-1\frac{3}{5}:\frac{1}{10}\)

\(=\frac{4}{3}.\frac{15}{7}-\frac{8}{5}:\frac{1}{10}\)

\(=\frac{20}{7}-16=\frac{-92}{7}\)

\(C=1\frac{13}{15}.\left(0,5\right)^2.3+\left(\frac{8}{15}-25\%\right):1\frac{23}{24}\)

\(=\frac{28}{15}.\frac{1}{4}.3+\frac{17}{60}:\frac{47}{24}\)

\(=\frac{7}{15}.3+\frac{17}{60}:\frac{47}{24}\)

\(=\frac{7}{5}+\frac{34}{235}=\frac{363}{235}\)