Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Làm ngắn gọn thôi nhé :v
\(A=\frac{2x}{x^2-3x}+\frac{2x}{x^2-4x+3}+\frac{x}{x-1}\)
\(A=\frac{x^5-3x^4-3x^3+11x^2-6x}{x^5-8x^2+22x^2-24x+9}\)
\(A=\frac{x^4-3x^3-3x^2+11x-6}{x^4-8x^3+22x^2-24x+9}\)
\(A=\frac{\left(x-1\right)\left(x-1\right)\left(x+2\right)\left(x-3\right)}{\left(x-1\right)\left(x-1\right)\left(x-3\right)\left(x-3\right)}\)
\(A=\frac{x+2}{x-3}\)
\(B=\frac{x}{x+2}+\frac{2}{x-2}-\frac{4x}{4-x^2}\)
\(B=\frac{-x^4-4x^3+16x+16}{-x^4+8x^2-16}\)
\(B=\frac{\left(-x-2\right)\left(x+2\right)\left(x+2\right)\left(x-2\right)}{\left(-x-2\right)\left(x-2\right)\left(x+2\right)\left(x-2\right)}\)
\(B=\frac{x+2}{x-2}\)
\(C=\frac{1+x}{3-x}-\frac{1-2x}{3+x}-\frac{x\left(1-x\right)}{9-x^2}\)
\(C=\frac{1+x}{3-x}-\left(\frac{1-2x}{3+x}\right)-\frac{x\left(1-x\right)}{9-x^2}\)
\(C=\frac{10x}{-x^2+9}\)
\(D=\frac{5}{2x^2+6x}-\frac{4-3x^2}{x^2-9}-3\)
\(D=\frac{5}{2x^2+6x}-\left(\frac{4-3x^2}{x^2-9}\right)-3\)
\(D=\frac{51x^2+138x-45}{2x^4+6x^2-18x^2-54x}\)
\(D=\frac{3\left(17x-5\right)\left(x+3\right)}{2x\left(x+3\right)\left(x+3\right)\left(x-2\right)}\)
\(D=\frac{51x-15}{2x^3-18x}\)
\(E=\frac{3x+2}{x^2-2x+1}-\frac{6}{x^2-1}-\frac{3x-2}{x^2+2x+1}\)
\(E=\frac{3x+2}{x^2-2x+1}-\frac{6}{x^2-1}-\left(\frac{3x-2}{x^2+2x+1}\right)\)
\(E=\frac{10x^4-10}{x^6-3x^4+3x^2-1}\)
\(E=\frac{10\left(x^2+1\right)\left(x+1\right)\left(x-1\right)}{\left(x+1\right)\left(x+1\right)\left(x+1\right)\left(x-1\right)\left(x-1\right)\left(x-1\right)}\)
\(E=\frac{10x^2+10}{x^4-2x+1}\)
hu hu !! Sao ko có ai làm giúp em hết vậy!
Ngày mai em bị ăn đòn mất!!!hu hu
a) Bạn xem lại vế phải của PT là $x^2-1$ hay $x^3-1$?
b) ĐK: $x\neq \pm 4$
PT \(\Leftrightarrow 5+\frac{48}{x-8}=\frac{2x-1}{x+4}+\frac{3x-1}{x-4}=\frac{2(x+4)-9}{x+4}+\frac{3(x-4)+11}{x-4}\)
\(\Leftrightarrow 5+\frac{48}{x-8}=2-\frac{9}{x+4}+3+\frac{11}{x-4}\)
\(\Leftrightarrow \frac{48}{x-8}=\frac{11}{x-4}-\frac{9}{x+4}=\frac{11(x+4)-9(x-4)}{(x-4)(x+4)}=\frac{2x+80}{x^2-16}\)
\(\Leftrightarrow \frac{24}{x-8}=\frac{x+40}{x^2-16}\Rightarrow 24(x^2-16)=(x-8)(x+40)\)
\(\Leftrightarrow 24x^2-384=x^2+32x-320\)
\(\Leftrightarrow 23x^2-32x-64=0\Rightarrow x=\frac{16\pm 24\sqrt{3}}{23}\) (cảm giác đề cứ sai sai)
c)
ĐK: $x\neq \pm \frac{2}{3}$
\(\frac{3x+2}{3x-2}-\frac{6}{2+3x}=\frac{9x^2}{9x^2-4}\)
\(\Leftrightarrow \frac{(3x+2)^2-6(3x-2)}{(3x-2)(3x+2)}=\frac{9x^2}{(3x-2)(3x+2)}\)
\(\Rightarrow (3x+2)^2-6(3x-2)=9x^2\)
\(\Leftrightarrow 9x^2+12x+4-18x+12=9x^2\)
\(\Leftrightarrow -6x+16=0\Rightarrow x=\frac{8}{3}\)
Bạn đưa quá nhiều bài 1 lúc nên người ta giải được cũng chẳng ai muốn giải đâu, vì nhìn vào đã thấy ngộp rồi. Kinh nghiệm là muốn được giải quyết nhanh thì chỉ đăng 2-3 bài 1 lúc thôi
Bài 1:
a/ \(11-\left(2x+3\right)=3\left(x-4\right)\)
\(\Leftrightarrow11-2x-3=3x-12\)
\(\Leftrightarrow5x=20\)
\(\Rightarrow x=4\)
b/ \(5\left(2x-3\right)-4\left(5x-7\right)=19-2x\)
\(\Leftrightarrow10x-15-20x+28=19-2x\)
\(\Leftrightarrow8x=-6\)
\(\Rightarrow x=-\frac{3}{4}\)
c/
\(\frac{x}{3}-\frac{2x+1}{2}=\frac{x}{6}-x\)
\(\Leftrightarrow2x-3\left(2x+1\right)=x-6x\)
\(\Leftrightarrow x=3\)
d/
\(\frac{5x+2}{6}-\frac{8x-1}{3}=\frac{4x+2}{5}-5\)
\(\Leftrightarrow5\left(5x+2\right)-10\left(8x-1\right)=6\left(4x+2\right)-150\)
\(\Leftrightarrow79x=158\)
\(\Rightarrow x=2\)
e/
\(\frac{2-6x}{5}-\frac{2+3x}{10}=7-\frac{6x+3}{4}\)
\(\Leftrightarrow4\left(2-6x\right)-2\left(2+3x\right)=140-5\left(6x+3\right)\)
\(\Leftrightarrow0=-121\) (vô lý)
Vậy pt vô nghiệm
f/
\(\frac{3x+2}{2}-\frac{3x+1}{6}=2x+\frac{5}{3}\)
\(\Leftrightarrow3\left(3x+2\right)-\left(3x+1\right)=12x+10\)
\(\Leftrightarrow6x=-5\)
\(\Rightarrow x=-\frac{5}{6}\)
\(\frac{x-3}{x-2}-\frac{x-2}{x-4}=3\frac{1}{5}\)
\(\Leftrightarrow\frac{\left(x-3\right)\left(x-4\right)-\left(x-2\right)^2}{\left(x-2\right)\left(x-4\right)}=\frac{16}{5}\)
\(\Leftrightarrow16\left(x^2-6x+8\right)=5\left(-3x+8\right)\)
\(\Leftrightarrow16x^2-81x+88=0\)
\(\Leftrightarrow16\left(x^2-\frac{81}{16}x+\frac{11}{2}\right)=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\frac{81}{32}+\frac{6561}{1024}-\frac{929}{1024}=0\)
\(\Leftrightarrow\left(x-\frac{81}{32}\right)^2=\left(\frac{\pm\sqrt{929}}{32}\right)^2\)
\(\Leftrightarrow x=\frac{\pm\sqrt{929}+81}{32}\)( thỏa ĐK )
Vậy....
\(3x^2-7x+1=0\)
\(\Leftrightarrow3\left(x^2-\frac{7}{3}\cdot x+\frac{1}{3}\right)=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\frac{7}{6}+\frac{49}{36}-\frac{37}{36}=0\)
\(\Leftrightarrow\left(x-\frac{7}{6}\right)^2=\left(\frac{\pm\sqrt{37}}{6}\right)^2\)
\(\Leftrightarrow x=\frac{\pm\sqrt{37}+7}{6}\)
Vậy....
\(2x^2-6x+1=0\)
\(\Leftrightarrow2\left(x^2-3x+\frac{1}{2}\right)=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\frac{3}{2}+\frac{9}{4}-\frac{7}{4}=0\)
\(\Leftrightarrow\left(x-\frac{3}{2}\right)^2=\left(\frac{\pm\sqrt{7}}{2}\right)^2\)
\(\Leftrightarrow x=\frac{\pm\sqrt{7}+3}{2}\)
Vậy....
Mình là 1 câu mẫu, các câu kia tương tự nhé bạn !
a) \(Q=\frac{3x^2-x+3}{3x+2}=\frac{3x^2+2x-3x-2+5}{3x+2}=\frac{\left(3x+2\right)\left(x-1\right)+5}{3x+2}=x-1+\frac{5}{3x+2}\)
Để \(Q\) nhận giá trị nguyên thì \(5⋮3x+2\)
\(\Leftrightarrow3x+2\inƯ\left(5\right)=\left\{1,-1,5,-5\right\}\) ( Do \(x\in Z\) )
\(\Leftrightarrow x\in\left\{-\frac{1}{3};-1;1;-\frac{7}{3}\right\}\)
Mà \(x\in Z\) nên \(\Leftrightarrow x\in\left\{-1;1\right\}\)
Vậy \(\Leftrightarrow x\in\left\{-1;1\right\}\)
P/s : Phương pháp làm các bài dạng này :
- Phân tích tử để tử chứa nhân tử giống dưới mẫu, khi đó phần còn thừa lại sẽ có dạng \(\frac{a}{ax+b}\) ( với a trên tử có thể là dạng số, dạng biến dưới mẫu )
- Rồi làm tiếp bằng cách để biểu thức đó nguyên thì tử phải chia hết chia hết cho mẫu.
Chúc bạn học tốt nhé !
ĐKXĐ: ...
Đặt \(x^2-3x+2=t\Rightarrow2x^2-6x+1=2t-3\)
\(\frac{4}{t}-\frac{3}{2t-3}+1=0\)
\(\Leftrightarrow8t-12-3t+t\left(2t-3\right)=0\)
\(\Leftrightarrow2t^2+2t-12=0\Rightarrow\left[{}\begin{matrix}t=2\\t=-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x^2-3x+2=2\\x^2-3x+2=-3\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-3x=0\\x^2-3x+5=0\end{matrix}\right.\)