K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2016

\(\Leftrightarrow\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{107}-\frac{1}{111}\)

\(\Rightarrow=\frac{1}{3}-\frac{1}{111}\)

\(=\frac{12}{37}\)

k nha

16 tháng 8 2016

\(=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{107}-\frac{1}{111}\)

\(=\frac{1}{3}-\frac{1}{111}\)

\(=\frac{108}{333}=\frac{12}{37}\)

28 tháng 6 2016

Đặt số cuối cùng là 4/x.(x+4)

a)Ta có:

A=4/3.7+4/7.11+...+4/x.(x+4)

A=1/3-1/7+1/7-1/11+....+1/x-1/(x+4)

A=1/3-1/(x+4)=664/1995

1/x+4=1/3-664/1995

1/1995=1/(x+4)

Từ đây ta dễ dàng nhận thấy:

x=1991

Và phân số cuối cùng của dãy là:

4/1991.1995

b)Dựa vào mẫu số,dễ thấy:

Số đầu tiên coi như là 3,số cuối là 1995

Có số số hạng là:

(1995-3):4+1=499(số hạng)

Chúc em học tốt^^

28 tháng 6 2016

a) Theo quy luật trên, ta thấy số hạng cuối cùng của dãy có dạng 4/(x-4).x (x thuộc N*)

Ta có:

\(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{\left(x-4\right).x}=\frac{664}{1995}\)

\(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{x-4}-\frac{1}{x}=\frac{664}{1995}\)

\(\frac{1}{3}-\frac{1}{x}=\frac{664}{1995}\)

\(\frac{1}{x}=\frac{1}{3}-\frac{664}{1995}\)

\(\frac{1}{x}=\frac{1}{1995}\)

\(=>x=1995\)

=> số hạng cuối cùng của dãy trên là 4/1991.1995

b) Quy luật: thừa số thứ nhất của mỗi số trên đều có dạng 4k-1 (k là số thứ tự của số đó, k thuộc N*)

Ta có: 3 = 4.1 - 1

7 = 4.2 - 1

11 = 4.3 - 1

....

1991 = 4.498 - 1

=> dãy trên có 498 số hạng

Ủng hộ mk nha ^_^

\(\frac{2}{3}.\frac{4}{5}+\frac{1}{3}.\frac{4}{5}=\frac{4}{5}\left(\frac{2}{3}+\frac{1}{3}\right)=\frac{4}{5}.\frac{3}{3}=\frac{4}{5}.1=\frac{4}{5}\)

\(\frac{1}{2}:\frac{3}{4}+\frac{1}{6}:\frac{3}{4}=\frac{3}{4}:\left(\frac{1}{2}+\frac{1}{6}\right)=\frac{3}{4}:\frac{2}{3}=\frac{9}{8}\)

\(\frac{2}{3}.\frac{4}{5}-\frac{1}{3}.\frac{4}{5}=\frac{4}{5}\left(\frac{2}{3}-\frac{1}{3}\right)=\frac{4}{5}.\frac{1}{3}=\frac{4}{15}\)

\(\frac{1}{2}:\frac{3}{4}-\frac{1}{6}:\frac{3}{4}=\frac{3}{4}:\left(\frac{1}{2}-\frac{1}{6}\right)=\frac{3}{4}:\frac{1}{3}=\frac{9}{4}\)

19 tháng 7 2016

\(\frac{2}{3}.\frac{4}{5}+\frac{1}{3}.\frac{4}{5}=\left(\frac{2}{3}+\frac{1}{3}\right).\frac{4}{5}=1.\frac{4}{5}=\frac{4}{5}\)

\(\frac{1}{2}:\frac{3}{4}+\frac{1}{6}:\frac{3}{4}=\frac{1}{2}.\frac{4}{3}+\frac{1}{6}.\frac{4}{3}=\left(\frac{1}{2}+\frac{1}{6}\right).\frac{4}{3}=\frac{2}{3}.\frac{4}{3}=\frac{8}{9}\)

c,d tương tự 

6 tháng 5 2017

Ta gọi biểu thức đó là A

Ta có công thức        \(\frac{a}{b.c}=\frac{a}{c-b}.\left(\frac{1}{b}-\frac{1}{c}\right)\)

Dựa vào công thức ta có  

\(\frac{4}{2.4}=2.\left(\frac{1}{2}-\frac{1}{4}\right)\)

\(\frac{4}{4.6}=2.\left(\frac{1}{4}-\frac{1}{6}\right)\)

\(....................\)

\(\frac{4}{18.20}=2.\left(\frac{1}{18}-\frac{1}{20}\right)\)

\(\Rightarrow\)\(A=2.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+....+\frac{1}{18}-\frac{1}{20}\right)\)

\(\Rightarrow\)\(A=2.\left(\frac{1}{2}-\frac{1}{20}\right)\)

\(\Rightarrow\)\(A=2.\left(\frac{9}{20}\right)=\frac{18}{20}\)

Ai thấy đúng thì ủng hộ nha !!!

sai rồi kết quả phải bằng 9/10 chứ 

16 tháng 7 2017

a, 3/4 + 1/4.x=2

    1/4.x        = 2-3/4

     1/4.x      =5/4

     x           = 5/4:1/4

     x           = 5

     

16 tháng 7 2017

b, x-2/3.9/4=2,5-1/2

    x-2/3.9/4=2

    x-2/3     =2:9/4

    x-2/3   =8/9

     x        = 8/9+2/3

     x         = 14/9

    

4 tháng 7 2017

Đặt \(A=\frac{4}{3}\cdot\frac{4}{7}+\frac{4}{7}\cdot\frac{4}{11}+...+\frac{4}{95}\cdot\frac{4}{99}\)

\(A=\frac{16}{21}+\frac{16}{77}+...+\frac{16}{9405}\)

\(A=\frac{16}{3\cdot7}+\frac{16}{7\cdot11}+....+\frac{16}{95\cdot99}\)

\(A=\frac{16}{4}\cdot\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{95}-\frac{1}{99}\right)\)

\(A=4\cdot\left(\frac{1}{3}\cdot\frac{1}{99}\right)=4\cdot\frac{32}{99}=\frac{128}{99}\)

19 tháng 7 2016

a)\(=\frac{3}{2}\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{2013}-\frac{1}{2015}\right)\)

\(=\frac{3}{2}\left(\frac{1}{5}-\frac{1}{2015}\right)\)

\(=\frac{3}{2}\cdot\frac{402}{2015}\)

\(=\frac{603}{2015}\)

b)\(=\frac{4}{5}\left(\frac{1}{3}-\frac{1}{8}+\frac{1}{8}-\frac{1}{13}+...+\frac{1}{93}-\frac{1}{98}\right)\)

\(=\frac{4}{5}\left(\frac{1}{3}-\frac{1}{98}\right)\)

\(=\frac{4}{5}\cdot\frac{95}{294}\)

\(=\frac{38}{147}\)

19 tháng 7 2016

a) Gọi tổng trên là A

A = \(\frac{3}{5.7}+\frac{3}{7.9}+\frac{3}{9.11}+...+\frac{3}{2013.2015}\)

A == \(\frac{3}{5}-\frac{3}{7}+\frac{3}{7}-\frac{3}{9}+\frac{3}{9}-\frac{3}{11}+...+\frac{3}{2013}-\frac{3}{2015}\)

Vì một số trừ cho a rồi cộng cho a sẽ bằng chính số đó nên:

A = \(\frac{3}{5}-\frac{3}{2015}\)

A = \(\frac{1209}{2015}-\frac{3}{2015}\)

A = \(\frac{1206}{2015}\)

b) Gọi tổng trên là B

B = \(\frac{4}{3.8}+\frac{4}{8.13}+\frac{4}{13.15}+...+\frac{4}{93.98}\)

B = \(\frac{4}{3}-\frac{4}{8}+\frac{4}{8}-\frac{4}{13}+\frac{4}{13}-\frac{4}{15}+...+\frac{4}{93}-\frac{4}{98}\)

Vì một số trừ cho a rồi cộng cho a sẽ bằng chính số đó nên:

B = \(\frac{4}{3}-\frac{4}{98}\)

B = \(\frac{686}{294}-\frac{12}{294}\)

B = \(\frac{674}{294}=\frac{337}{147}\)

8 tháng 4 2017

Gọi tổng là A ta có:

\(A.2=\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{18.20}\)

\(A.2=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{18}-\frac{1}{20}\)

\(A.2=\frac{1}{2}-\frac{1}{20}\)

\(A=\frac{9}{20}:2=\frac{9}{40}\)

29 tháng 6 2017

Ta có :

\(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+....+\frac{4}{23.27}\)

\(=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+....+\frac{1}{23}-\frac{1}{27}\)

\(=\frac{1}{3}-\frac{1}{27}==\frac{9}{27}-\frac{1}{27}=\frac{8}{27}\)

29 tháng 6 2017

Đặt \(A=\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+\frac{4}{15.19}++\frac{4}{19.23}+\frac{4}{23.27}\)

\(A=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{23}-\frac{1}{27}\)

\(A=\frac{1}{3}-\frac{1}{27}\)

\(A=\frac{8}{27}\)