Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{4}{1\cdot3\cdot5}+\frac{4}{3\cdot5\cdot7}+\frac{4}{5\cdot7\cdot9}+\frac{4}{7\cdot9\cdot11}+\frac{4}{9\cdot11\cdot13}\)
\(=\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+...+\frac{1}{9.11}-\frac{1}{11.13}\)
\(=\frac{1}{1.3}-\frac{1}{11.13}\)
\(=\frac{1}{3}-\frac{1}{143}\)
\(=\frac{140}{429}\)
\(=\frac{4}{5.7}+\frac{4}{7.9}+\frac{4}{9.11}+...+\frac{4}{59.61}\)
\(=2.\left(\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{59.61}\right)\)
\(=2.\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{59}-\frac{1}{61}\right)\)
=\(2.\left(\frac{1}{5}-\frac{1}{61}\right)\)
\(=2.\left(\frac{36}{505}\right)\)
\(=\frac{72}{505}\)
TK nha !!
Ta có : \(\frac{4}{5.7}+\frac{4}{7.9}+\frac{4}{9.11}+....+\frac{4}{59.61}\)
\(=2\left(\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+.....+\frac{2}{59.61}\right)\)
\(=2\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+.....+\frac{1}{59}-\frac{1}{61}\right)\)
\(=2\left(\frac{1}{5}-\frac{1}{61}\right)\)
\(=2.\frac{56}{305}=\frac{112}{305}\)
tớ ko chép lại đề đâu
\(\frac{1}{2}M=\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+...+\frac{2}{101.103}\)
\(=\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{101}-\frac{1}{103}\)
\(=\frac{1}{5}-\frac{1}{103}\)
=\(\frac{98}{515}\)
=> \(M=\frac{98}{515}:\frac{1}{2}=\frac{196}{515}\)
Vậy \(M=\frac{196}{515}\)
M = \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\)
M = \(\frac{2}{1}-\frac{2}{3}+\frac{2}{3}-\frac{2}{5}+\frac{2}{5}-\frac{2}{7}+\frac{2}{7}-\frac{2}{9}+\frac{2}{9}-\frac{2}{11}\)
M = \(\frac{2}{1}-\frac{2}{11}\)
M = \(\frac{20}{11}\)
\(=\frac{3}{2}\left(\frac{2}{5.7}+\frac{2}{7.9}+.....+\frac{2}{59.61}\right)\)
\(=\frac{3}{2}\left(\frac{1}{5}-\frac{1}{61}\right)\)
\(=\frac{3}{2}.\frac{56}{305}\)
\(=\frac{84}{305}\)
tk cho minh nhe >.<
Ta có: \(\frac{2}{3}\times\left(\frac{3}{5.7}+\frac{3}{7.9}+.....+\frac{3}{59.61}\right):\frac{2}{3}\)
\(\Rightarrow\left(\frac{2}{5.7}+\frac{2}{7.9}+.....+\frac{2}{59.61}\right):\frac{2}{3}\)
\(=\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+....+\frac{1}{59}-\frac{1}{61}\right):\frac{2}{3}\)
\(\Rightarrow\left(\frac{1}{5}-\frac{1}{61}\right):\frac{2}{3}=\frac{56}{305}:\frac{2}{3}=\frac{84}{305}\)
\(S=\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+...+\frac{2}{93.95}\)
\(S=\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{93}-\frac{1}{95}\)
\(S=\frac{1}{5}-\frac{1}{95}\)
\(S=\frac{18}{95}\)
Vậy \(S=\frac{18}{95}\)
Giải
\(S=\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{93}-\frac{1}{95}\)
\(=\frac{1}{5}-\frac{1}{95}\)
\(=\frac{18}{95}\)
Vậy S=\(\frac{18}{95}\)
Bạn xem lời giải của mình nhé:
Giải:
\(\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{93.95}\\ =\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{93}-\frac{1}{95}\\ \frac{1}{5}-\frac{1}{95}\\ =\frac{19-1}{95}=\frac{18}{95}\)
Chúc bạn học tốt!
Ta thấy: \(\frac{2}{5.7}=\frac{1}{5}-\frac{1}{7};\frac{2}{7.9}=\frac{1}{7}-\frac{1}{9};.....;\frac{2}{93.95}=\frac{1}{93}-\frac{1}{95}\)
\(S=\frac{2}{5.7}+\frac{2}{7.9}+....+\frac{2}{93.95}\)
\(S=\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-.....-\frac{1}{95}\)
\(S=\frac{1}{5}-\frac{1}{95}=\frac{18}{95}\)
\(\frac{19}{37}+\left(1-\frac{19}{37}\right)\)
\(=\frac{19}{37}+1-\frac{19}{37}\)
\(=\left(\frac{19}{37}-\frac{19}{37}\right)+1\)
\(=0+1=1\)
2/3(2/5.7 + 2/7.9 + 2/9.11 +.....+2/197.199)
2/3(1/5 - 1/7 + 1/7 - 1/9 + 1/9 - 1/11 +......+ 1/197 - 1/199)
2/3(1/5 - 1/199)
............Còn lại tự làm nhé!
\(\frac{3}{5.7}+\frac{3}{7.9}+\frac{3}{9,11}+...+\frac{3}{197.199}\)
\(=\frac{3}{5}-\frac{3}{7}+\frac{3}{7}-\frac{3}{9}+\frac{3}{9}-\frac{3}{11}+...+\frac{3}{197}-\frac{3}{199}\)
\(=\frac{3}{5}-\frac{3}{199}=\)
Tới đây tự tính