\(\frac{3}{1.2}+\frac{3}{2.3}+\frac{3}{3.4}+........+\frac{3}{19.20}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2016

                  \(\frac{3}{1.2}+\frac{3}{2.3}+\frac{3}{3.4}+...+\frac{3}{19.20}\)

               \(=3.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{19.20}\right)\)

              \(=3.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{19}-\frac{1}{20}\right)\)

              \(=3.\left(1-\frac{1}{20}\right)\)

             \(=3.\frac{19}{20}=\frac{57}{20}\)

              Ủng hộ mk nha !!! ^_^

19 tháng 7 2016

dung xich ma nhanh nhat ma chinh xac nhat

17 tháng 3 2018

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+..........+\frac{1}{19.20}-\frac{x}{40}=\frac{3}{-10}\)

\(\Rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-........-\frac{1}{20}-\frac{x}{40}=\frac{-3}{10}\)

\(\Rightarrow1-\frac{1}{20}-\frac{x}{40}=\frac{-3}{10}\)

\(\Rightarrow\frac{40}{40}-\frac{2}{40}-\frac{x}{40}=\frac{-12}{40}\)

\(\Rightarrow\frac{38}{40}-\frac{x}{40}=\frac{-12}{40}\)

\(\Rightarrow\frac{x}{40}=\frac{38}{40}-\frac{-12}{40}\)

\(\Rightarrow\frac{x}{40}=\frac{38}{40}+\frac{12}{40}\)

\(\Rightarrow\frac{x}{40}=\frac{50}{40}\)

\(\Rightarrow x=50\)

Vậy x = 50

17 tháng 3 2018

\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+..+\frac{1}{19\cdot20}-\frac{x}{40}=\frac{-3}{10}\)\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+..+\frac{1}{19}-\frac{1}{20}-\frac{x}{40}=\frac{3}{-10}\)

\(1-\frac{1}{20}-\frac{x}{40}=\frac{3}{-10}\)

\(\frac{x}{40}=1-\frac{1}{20}-\frac{3}{-10}=1\frac{1}{4}=\frac{5}{4}\)

\(\frac{x}{40}=\frac{5}{4}\Rightarrow x=\frac{40\cdot5}{4}=50\)

27 tháng 8 2017

a) = 1-1/2+1/2-1/3+1/3-1/4

    = 1-1/4=3/4

b)=1-1/2+1/2-1/3+1/3-1/4+...+1/2016-1/2017+1/2017-1/2018

   =1-1/2018=2017/2018

c)=1/2-1/5+1/5-1/8+1/8-1/11+1/2009-1/2012+1/2012-1/2015

   = 1/2-1/2015=2015/4030-2/4030=2013/4030

27 tháng 8 2017

a) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}=1-\frac{1}{4}=\frac{3}{4}\)

b) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2017.2018}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017-2018}\)

\(=1-\frac{1}{2018}\)

\(=\frac{2017}{2018}\)

c) \(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{2012.2015}\)

\(=3\left(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{2012.2015}\right)\)

\(\Leftrightarrow\frac{3}{2}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{2012}-\frac{1}{2015}\right)\)

\(=\frac{3}{2}\left(\frac{1}{2}-\frac{1}{2015}\right)\)

\(=\frac{3}{2}.\frac{2013}{4030}\)

\(=\frac{6039}{8060}\)

8 tháng 8 2018

Đặt  \(A=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{18.19}+\frac{2}{19.20}\)

\(A=2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{18.19}+\frac{1}{19.20}\right)\)

\(A=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{19}-\frac{1}{20}\right)\)

\(A=2\left(1-\frac{1}{20}\right)\)

\(A=2.\frac{19}{20}=\frac{19}{10}\)

Vậy ...

8 tháng 8 2018

=2.(\(\frac{1}{1.2}\)+\(\frac{1}{2.3}\)+......+\(\frac{1}{19.20}\))

=2.( 1-\(\frac{1}{2}\)+\(\frac{1}{2}\)-\(\frac{1}{3}\)+..........+\(\frac{1}{19}\)-\(\frac{1}{20}\))

=2.(1-\(\frac{1}{20}\))

=2.\(\frac{19}{20}\)

=  \(\frac{19}{10}\)

10 tháng 7 2019

A = \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{19.20}\)

   = \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{19}-\frac{1}{20}\)

   = \(1-\frac{1}{20}\)

   = \(\frac{19}{20}\)

Vậy A = \(\frac{19}{20}\)

10 tháng 7 2019

\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{19.20}\)

\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{19}-\frac{1}{20}\)

\(A=\frac{1}{1}-\frac{1}{20}=\frac{19}{20}\)

Vậy A = 19/20

13 tháng 3 2017

Xin lỗi máy tớ chỉ có cách viết phân số thế này / thông cảm

Ta có : A= 1/1 -1/2 + 1/2 -1/3 + 1/3 - 1/4 + 1/4 -1/5 +... + 1/19 - 1/20

=>       A= 1/1 - 1/20

=>        A = 19/20

Vậy A = 19/20

13 tháng 3 2017

\(\frac{19}{20}\)nhé

6 tháng 5 2018

Bài 1

a) \(P=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)

\(=1-\frac{1}{10}\)

\(=\frac{10}{10}-\frac{1}{10}=\frac{9}{10}\)

b) \(S=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)

\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\)

\(=\frac{1}{3}-\frac{1}{99}\)

\(=\frac{33}{99}-\frac{1}{99}\)

\(=\frac{32}{99}\)

c)\(Q=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{19.20}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{19}-\frac{1}{20}\)

\(=\frac{1}{2}-\frac{1}{20}\)

\(=\frac{10}{20}-\frac{1}{20}\)

\(=\frac{9}{20}\)

Tk mình nha!!

7 tháng 5 2018

Câu 2:

\(P=\left(1+\frac{1}{2}\right).\left(1+\frac{1}{3}\right).\left(1+\frac{1}{4}\right)...\left(1+\frac{1}{99}\right)\)

\(=\left(\frac{2}{2}+\frac{1}{2}\right).\left(\frac{3}{3}+\frac{1}{3}\right).\left(\frac{4}{4}+\frac{1}{4}\right)...\left(\frac{99}{99}+\frac{1}{99}\right)\)

\(=\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}\cdot...\cdot\frac{100}{99}\)

\(=\frac{3\cdot4\cdot5...100}{2.3.4...99}\)

\(=\frac{3\cdot100}{2}\)

\(=\frac{300}{2}=150\)

16 tháng 5 2017

Ta có: \(\frac{1}{1.2}=\frac{3}{1.2.3}\) ;\(\frac{1}{1.2+2.3}=\frac{3}{2.3.4}\)\(\frac{1}{2.3+3.4}=\frac{3}{3.4.5}\); ......;\(\frac{1}{1.2+2.3+3.4+...+n\left(n+1\right)}=\frac{3}{n\left(n+1\right)\left(n+2\right)}\)

=> \(S=\frac{3}{1.2.3}+\frac{3}{2.3.4}+\frac{3}{3.4.5}+...+\frac{3}{n\left(n+1\right)\left(n+2\right)}\)

=> \(\frac{2S}{3}=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{n\left(n+1\right)\left(n+2\right)}\)

Ta lại có: \(\frac{2}{1.2.3}=\frac{1}{1.2}-\frac{1}{2.3}\)\(\frac{2}{2.3.4}=\frac{1}{2.3}-\frac{1}{3.4}\)\(\frac{2}{3.4.5}=\frac{1}{3.4}-\frac{1}{4.5}\);....;\(\frac{2}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)

=> \(\frac{2S}{3}=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)

=> \(\frac{2S}{3}=\frac{1}{1.2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)=> \(S=\frac{3}{4}-\frac{3}{2\left(n+1\right)\left(n+2\right)}< \frac{3}{4}\)

=> \(S< \frac{3}{4}\)

16 tháng 5 2017

Mình nhầm 1 chỗ: \(\frac{1}{1.2+2.3+3.4}=\frac{3}{3.4.5}\)

26 tháng 3 2018

Đề sai bạn nha !!! 

26 tháng 3 2018

    \(\frac{3}{1.2}+\frac{3}{2.3}+\frac{3}{3.4}+...+\frac{3}{99.100}\)

\(=3.\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)\)

\(=3.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(=3.\left(1-\frac{1}{100}\right)\)

\(=3.\frac{99}{100}\)

\(=\frac{297}{100}\)

Tham khảo nha !!! 

8 tháng 3 2017

\(S=\frac{3}{1.2}+\frac{3}{2.3}+\frac{3}{3.4}+\frac{3}{4.5}+....+\frac{3}{2015.2016}\)

\(\Rightarrow\frac{1}{3}.S=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{2015.2016}\)

\(\Rightarrow\frac{1}{3}.S=\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+......+\left(\frac{1}{2015}-\frac{1}{2016}\right)\)

\(\Rightarrow\frac{1}{3}.S=\frac{1}{1}-\frac{1}{2016}\)

\(\Rightarrow\frac{1}{3}.S=\frac{2015}{2016}\)

\(\Rightarrow S=\frac{2015}{672}\)

Vậy: \(\Rightarrow S=\frac{2015}{672}\)

Bạn giải giúp mk câu mk đăng tầm 5 phút nha!

8 tháng 3 2017

đơn giản