K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2018

ta có: \(\frac{2^5.7+2^5}{2^5.2^5-2^5.3}=\frac{2^5.\left(7+1\right)}{2^5.\left(2^5-3\right)}=\frac{8}{2^5-3}=\frac{8}{29}=\frac{104}{377}\)

\(\frac{3^4.5.\left(-3\right)^6}{3^4.13.3^4}=\frac{3^{10}.5}{3^8.13}=\frac{3^2.5}{13}=\frac{45}{13}=\frac{1305}{377}\)

\(\Rightarrow\frac{104}{377}< \frac{1305}{377}\Rightarrow\frac{2^5.7+2^5}{2^5.2^5-2^5.3}< \frac{3^4.5.\left(-3\right)^6}{3^4.13.3^4}\)

19 tháng 6 2018

Ta cứ tính ra tử số và mỗi số của từng phân số ra nhé Jerry Gaming:

\(\frac{2^5.7+2^5}{2^5.2^5-2^5.3}\)\(\frac{2^5.\left(7+1\right)}{2^5.\left(2^5-3\right)}=\frac{2^5.8}{2^5.\left(32-3\right)}=\frac{32.8}{2^5.29}=\frac{32.8}{32.29}=\frac{8}{29}\)

\(\frac{3^4.5.\left(-3\right)^6}{3^4.13.3^4}\)\(\frac{3^4.5.3^6}{3^8.13}=\frac{3^{10}.5}{3^8.13}=\frac{3^2.5}{13}=\frac{9.5}{13}=\frac{45}{13}\)

\(\frac{8}{29}\)và \(\frac{45}{13}\)MSC: 377

Ta có:

\(\frac{8}{29}=\frac{8.13}{29.13}=\frac{104}{377}\)

\(\frac{45}{13}=\frac{45.29}{13.29}=\frac{1305}{377}\)

Vậy quy đồng \(\frac{2^5.7+2^5}{2^5.2^5-2^5.3}\)và \(\frac{3^4.5.\left(-3\right)^6}{3^4.13.3^4}\)ta được \(\frac{104}{377}\)và \(\frac{1305}{377}\)

Chúc bạn học tốt!

23 tháng 8 2023

\(B=\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+\dfrac{2}{3.4.5}+\dfrac{2}{4.5.6}+\dfrac{2}{5.6.7}+\dfrac{2}{6.7.8}\)

\(=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{6.7}-\dfrac{1}{7.8}\)

\(=\dfrac{1}{1.2}-\dfrac{1}{7.8}\)

\(=\dfrac{1}{2}-\dfrac{1}{56}=\dfrac{27}{56}\)

24 tháng 8 2023

Thanks

30 tháng 4 2018

\(A=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+\frac{2}{5.6}+\frac{2}{6.7}\)

\(A=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)

\(A=2.\left(1-\frac{1}{7}\right)\)

\(A=2.\frac{6}{7}\)

\(A=\frac{12}{7}\)

30 tháng 4 2018

\(A=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+\frac{2}{5.6}+\frac{2}{6.7}\)

\(A=2.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right)\)

\(A=2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{6}-\frac{1}{7}\right)\)

\(A=2.\left(1-\frac{1}{7}\right)\)

\(A=2.\left(\frac{7}{7}-\frac{1}{7}\right)\)

\(A=2.\frac{6}{7}\)

\(A=\frac{12}{7}\)

Chúc bạn học tốt !!! 

29 tháng 2 2016

\(\frac{16}{11},-\frac{5}{9},\frac{10}{539}\)

6 tháng 8 2016

\(\frac{4}{1\cdot3\cdot5}+\frac{4}{3\cdot5\cdot7}+\frac{4}{5\cdot7\cdot9}+\frac{4}{7\cdot9\cdot11}+\frac{4}{9\cdot11\cdot13}\)

\(=\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+...+\frac{1}{9.11}-\frac{1}{11.13}\)

\(=\frac{1}{1.3}-\frac{1}{11.13}\)

\(=\frac{1}{3}-\frac{1}{143}\)

\(=\frac{140}{429}\)

23 tháng 7 2017

a, A= \(5\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\right)\)

\(A=5\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)

\(A=5\left(1-\dfrac{1}{100}\right)\)

\(A=5.\dfrac{99}{100}=\dfrac{99}{20}.\)

b, \(C=1.2.3+2.3.4+...+8.9.10\)

\(4C=1.2.3.4+2.3.4.\left(5-1\right)+...+8.9.10.\left(11-7\right)\)\(4C=1.2.3.4+2.3.4.5-1.2.3.4+...+8.9.10.11-7.8.9.10\)\(4C=8.9.10.11\)

\(C=\dfrac{8.9.10.11}{4}=1980.\)

c, https://hoc24.vn/hoi-dap/question/384591.html

Câu này bạn vào đây mình đã giải câu tương tự nhé.

23 tháng 7 2017

\(1)A=\dfrac{5}{1.2}+\dfrac{5}{2.3}+...+\dfrac{5}{99.100}\)

\(\Leftrightarrow A=5\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)

\(\Leftrightarrow A=5\left(1-\dfrac{1}{100}\right)\)

\(\Leftrightarrow A=5\cdot\dfrac{99}{100}\)

\(\Leftrightarrow A=\dfrac{99}{20}\)

11 tháng 5 2017

Bài 1 :
a) =) \(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\)\(1-\frac{1}{101}=\frac{100}{101}\)
b) =) \(\frac{5}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\right)\)
=) \(\frac{5}{2}.\frac{100}{101}=\frac{250}{101}\)( theo phần a)
Bài 2 :
-Gọi d là UCLN \(\left(2n+1;3n+2\right)\)( d \(\in N\)* )
(=) \(2n+1⋮d\left(=\right)3.\left(2n+1\right)⋮d\)
(=) \(6n+3⋮d\)
và \(3n+2⋮d\left(=\right)2.\left(3n+2\right)⋮d\)
(=) \(6n+4⋮d\)
(=) \(\left(6n+4\right)-\left(6n+3\right)⋮d\)
(=) \(6n+4-6n-3⋮d\)
(=) \(1⋮d\left(=\right)d\in UC\left(1\right)\)(=) d = { 1;-1}
Vì d là UCLN\(\left(2n+1;3n+2\right)\)(=) \(d=1\)(=) \(\frac{2n+1}{3n+2}\)là phân số tối giản ( đpcm )
Bài 3 :
-Để A \(\in Z\)(=) \(n+2⋮n-5\)
Vì \(n-5⋮n-5\)
(=) \(\left(n+2\right)-\left(n-5\right)⋮n-5\)
(=) \(n+2-n+5⋮n-5\)
(=) \(7⋮n-5\)(=) \(n-5\in UC\left(7\right)\)= { 1;-1;7;-7}
(=) n = { 6;4;12;-2}
Vậy n = {6;4;12;-2} thì A \(\in Z\)
Bài 4:
A = \(10101.\left(\frac{5}{111111}+\frac{5}{222222}-\frac{4}{3.7.11.13.37}\right)\)
\(10101.\left(\frac{5}{111111}+\frac{5}{222222}-\frac{4}{111111}\right)\)
\(10101.\left(\frac{1}{111111}+\frac{5}{222222}\right)\)\(10101.\left(\frac{2}{222222}+\frac{5}{222222}\right)\)
\(10101.\frac{7}{222222}\)( không cần rút gọn \(\frac{7}{222222}\))
\(\frac{7}{22}\)

5 tháng 5 2022

`a)1/2 . [-3]/4 . [-5]/8 . [-8]/9=[1. (-3).(-5).(-8)]/[2.4.8.3.3]=[-5]/[2.4.3]=[-5]/24`

`b)(2/[1.3]+2/[3.5]+2/[5.7]).([10.13]/3-[2^2]/3-[5^3]/3)`

`=(1-1/3+1/3-1/5+1/5-1/7).[10.13-2^2-5^3]/3`

`=(1-1/7).[130-4-125]/3`

`=6/7 . 1/3 = 2/7`

____________________________________________________

`8/9+1/9 . 2/9+1/9 . 7/9`

`=8/9+1/9.(2/9+7/9)`

`=8/9+1/9 . 9/9`

`=8/9+1/9=9/9=1`

a) \(\dfrac{1}{2}\cdot\dfrac{-3}{4}\cdot\dfrac{-5}{8}\cdot\dfrac{-8}{9}\)

\(=\dfrac{1\cdot\left(-3\right)\cdot\left(-5\right)\cdot\left(-8\right)}{2\cdot4\cdot8\cdot9}\)

\(=-\dfrac{5}{24}\)

 

b) \(\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}\right)\cdot\left(\dfrac{10\cdot13}{3}-\dfrac{2^2}{3}-\dfrac{5^3}{3}\right)\)

\(=\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}\right)\cdot\left(\dfrac{130}{3}-\dfrac{4}{3}-\dfrac{125}{3}\right)\)

\(=\left(1-\dfrac{1}{7}\right)\cdot\dfrac{1}{3}\)

\(=\dfrac{6}{7}\cdot\dfrac{1}{3}\)

\(=\dfrac{2}{7}\)

 

\(\dfrac{8}{9}+\dfrac{1}{9}\cdot\dfrac{2}{9}+\dfrac{1}{9}\cdot\dfrac{7}{9}\)

\(=\dfrac{8}{9}+\dfrac{2}{81}+\dfrac{7}{81}\)

\(=\dfrac{72}{81}+\dfrac{2}{81}+\dfrac{7}{81}\)

\(=1\)

5 tháng 7 2019

#)Giải :

a)\(\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{24.25}\)

\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{24}-\frac{1}{25}\)

\(=\frac{1}{5}-\frac{1}{25}\)

\(=\frac{4}{25}\)

b)\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)

\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)

\(=1-\frac{1}{101}\)

\(=\frac{100}{101}\)

5 tháng 7 2019

a) \(\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{24.25}\)

\(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{24}-\frac{1}{25}\)

\(\frac{1}{5}-\frac{1}{25}\)

\(\frac{4}{25}\)

b) \(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\)

\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\)

\(1-\frac{1}{101}\)

\(\frac{100}{101}\)

c) \(5\frac{2}{7}.\frac{8}{11}+5\frac{2}{7}.\frac{5}{11}-5\frac{2}{7}.\frac{2}{11}\)

\(5\frac{2}{7}.\left(\frac{8}{11}+\frac{5}{11}-\frac{2}{11}\right)\)

\(5\frac{2}{7}\)

\(\frac{37}{7}\)