Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\begin{cases}\frac{x+y}{3}-\frac{x-y}{3}=\frac{14}{3}\left(1\right)\\3x-\frac{y}{2}+\frac{x}{4}=24\left(2\right)\end{cases}\).Từ \(\left(1\right)\Rightarrow\frac{2y}{3}=\frac{14}{3}\)
\(\Rightarrow2y=14\Rightarrow y=7\) thay vào (2) ta có:
\(3x-\frac{7}{2}+\frac{x}{4}=24\Rightarrow3x+\frac{x}{4}=24+\frac{7}{2}\)
\(\Rightarrow\frac{13x}{4}=\frac{55}{2}\Rightarrow13x\cdot2=55\cdot4\)
\(\Rightarrow26x=220\Rightarrow x=\frac{220}{26}=\frac{110}{13}\)
Vậy hệ pt có nghiệm là \(x=\frac{110}{13};y=7\)
a) \(\frac{x^2+3x+2}{2x+3}=\frac{2x-5}{4}\)
b) \(\frac{2x+3}{x-3}-\frac{4}{x+3}=\frac{24}{x^2-9}+2\)
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
a)dk :\(x\ne1;x\ne-4\)
quy đồng suy ra:
\(\frac{15x}{x^2+3x-4}=\frac{12\left(x-1\right)+4\left(x+4\right)+x^2+3x-4}{x^2+3x-4}=\frac{x^2+19x}{x^2+3x-4}\)
bỏ mẫu suy ra :15x=x2+19x
<=>x2+4x=0
<=>x(x+4)=0
\(\Leftrightarrow\orbr{\begin{cases}x=0\left(tm\right)\\x=-4\left(loại\right)\end{cases}}\) do điều kiện xác định.
vậy nghiệm của phương trình là x=0 0 0 0 một lik cho bạn