K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2018

\(\Leftrightarrow1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+2}=\frac{31}{32}.\)

\(\Leftrightarrow1-\frac{1}{x+2}=\frac{31}{32}\)

\(\Leftrightarrow\frac{1}{32}=\frac{1}{x+2}\)

\(\Leftrightarrow x+2=32\Rightarrow x=30\)

8 tháng 2 2022

hello❔

13 tháng 8 2019

\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{x\left(x+2\right)}=\frac{20}{41}\)

\(\Leftrightarrow1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+2}=\frac{20}{41}\)

\(\Leftrightarrow1-\frac{1}{x+2}=\frac{21}{41}\)

\(\Leftrightarrow\frac{1}{x+2}=1-\frac{21}{41}\)

\(\Leftrightarrow\frac{1}{x+2}=\frac{20}{41}\)

\(\Leftrightarrow20\left(x+2\right)=41\)

\(\Leftrightarrow x-2=\frac{41}{20}\)

\(\Leftrightarrow x=\frac{41}{20}+2\)

\(\Leftrightarrow x=\frac{81}{20}\)

13 tháng 8 2019

\(\frac{1}{1.3}+...+\frac{1}{a\left(a+2\right)}=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+....+\frac{2}{a\left(a+2\right)}\right)=\frac{1}{2}\left(1-\frac{1}{3}+....-\frac{1}{a+2}\right)\) 

\(=\frac{1}{2}\left(1-\frac{1}{a+2}\right)=\frac{20}{41}\Rightarrow a+2=41\Leftrightarrow a=39\)

25 tháng 3 2016

\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{x.\left(x+2\right)}=\frac{5}{11}\)

\(\Rightarrow\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+2}\right)=\frac{5}{11}\)

\(\Rightarrow\frac{1}{2}\left(1-\frac{1}{x+2}\right)=\frac{5}{11}\Rightarrow1-\frac{1}{x+2}=\frac{5}{11}\div\frac{1}{2}=\frac{10}{11}\)

\(\Rightarrow\frac{1}{x+2}=1-\frac{10}{11}=\frac{1}{11}\Rightarrow x+2=11\Rightarrow x=11-2=9\)

\(\frac{1}{1.3}+\frac{1}{3.5}+......+\frac{1}{x+\left(x+2\right)}\)

\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+........+\frac{1}{x}-\frac{1}{x+2}\)

\(=1-\frac{1}{x+2}=\frac{5}{11}\)

\(\frac{1}{x+2}=1-\frac{5}{11}=\frac{6}{11}\)

=> không có kết quả

21 tháng 5 2017

x = \(\frac{2}{99}\)

21 tháng 5 2017

\(\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{97.99}\right)-x=-\frac{100}{99}\)

\(\Rightarrow\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{97}-\frac{1}{99}\right)-x=-\frac{100}{99}\)

\(\Rightarrow\left(1-\frac{1}{99}\right)-x=-\frac{100}{99}\)

\(\Rightarrow\frac{98}{99}-x=-\frac{100}{99}\)

\(\Rightarrow x=\frac{98}{99}-\left(-\frac{100}{99}\right)\)

\(\Rightarrow x=\frac{198}{99}=2\)

Vậy x = 2

8 tháng 4 2016

bạn nào giải giúp mình với

nếu đúng thì mình sẽ ***

8 tháng 4 2016

=1/2*(1-1/3+1/3-1/5+....+1/x+1/x+2)

=1/2*(1-1/x+2)

=>1/2*x+1/x+2=20/21

Đến đó đưa về giống tìm x nha

24 tháng 3 2018

a, 2/3 của -420 là :

-420 x 2/3 = -280

Số cần tìm là :

-280 x 5/8 = -175

Vậy số cần tìm là -175

b, 1/1.3 + 1/3.5 + 1/5.7 + ... + 1/x ( x + 2 ) = 1005 / 2011

1/2 x ( 2/1.3 + 2/3.5 + 2/5.7 + ... + 2/ ( x ( x + 2 ) = 1005 / 2011

1/2 x ( 1/1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + ... + 1/x - 1/ x + 2 ) = 1005 / 2011

1/2 x ( 1 - 1/ x + 2 ) = 1005 / 2011

1 - 1 / x + 2 = 1005 / 2011 : 1/2 

1 - 1 / x + 2 = 2010 / 2011

x + 2 / x + 2 - 1 / x + 2 = 2010 / 2011

x + 2 - 1 / x + 2 = 2010 / 2011

x + 1 / x + 2 = 2010 / 2011

+> x + 1 = 2010 

x = 2010 - 1 

x = 2009

+> x + 2 = 2011 

x = 2011 - 2 

x = 2009 

Vậy x = 2009 

Tk nha Đúng đó !!

25 tháng 3 2018

Bài nhìn vô muốn xỉu rồi ='((

1. a) \(\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{91.94}+\frac{2}{94.97}\)

\(=\frac{2}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{91.94}+\frac{3}{94.97}\right)\)

\(=\frac{2}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{94}-\frac{1}{97}\right)\)

\(=\frac{2}{3}\left(1-\frac{1}{97}\right)=\frac{2}{3}.\frac{96}{97}=\frac{64}{97}\)

b) Bạn tự làm, làm nữa chắc xỉu =((( Khi nào rảnh mình sẽ làm, nếu bạn cần

2 ) 

a) \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{x\left(x+2\right)}=\frac{1005}{2011}\)

\(\Leftrightarrow\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+2}\right)=\frac{1005}{2011}\)

\(\Leftrightarrow\frac{1}{2}\left(1-\frac{1}{x+2}\right)=\frac{1005}{2011}\)

\(\Leftrightarrow1-\frac{1}{x+2}=\frac{1005}{2011}:2=\frac{1005}{4022}\)

\(\Leftrightarrow\frac{1}{x+2}=1-\frac{1005}{4022}=\frac{3017}{4020+2}\)

\(\Rightarrow x=4020\)

24 tháng 3 2018

tu ma lam nguoi ta con gap hon min nhieu

21 tháng 3 2016

<=>2-2/3+2/3-2/5........+2n-2n+2<2015/2016

<=>2-2n+2<2015/2016

=>n+2=1/2016

=>n=2014

21 tháng 3 2016

\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+......+\frac{2}{n\left(n+2\right)}\)<\(\frac{2015}{2016}\)

VT=\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{5}-\frac{1}{n+2}\)=\(1-\frac{1}{n+2}\)

Ta có:\(1-\frac{1}{n+2}=\frac{2015}{2016}\Rightarrow\)\(\frac{1}{n+2}=1-\frac{2015}{2016}\)

\(\Rightarrow\)\(\frac{1}{n+2}=\frac{1}{2016}=n+2=2016\)

\(\Rightarrow\)\(n=2014\)

Vậy\(n=2014\)

\(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{n\cdot\left(n+2\right)}<\frac{2003}{2004}\)

\(\Rightarrow1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{n}-\frac{1}{n+2}<\frac{2003}{2004}\)

\(\Rightarrow1-\frac{1}{n+2}<\frac{2003}{2004}\)

\(\Rightarrow\frac{1}{n+2}>\frac{1}{2004}\)

\(\Rightarrow n+2<2004\)

\(\Rightarrow n=2002\)

nhầm bước cuối

\(\Rightarrow n<2002\)