Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{x}{113}=\frac{113}{x}\Rightarrow xx=113.113\)
hay \(x^2=113^2\)
\(\Rightarrow x=113;x=-113\)
mà giá trị \(x< 0\) \(\Rightarrow x=-113\)
Vậy \(x=-113\)
\(\frac{x}{113}=\frac{113}{x}\)
\(\Rightarrow x^2=113^2\)
\(\Rightarrow x=113\) hoặc \(x=-113\)
Vậy \(x=113\) hoặc \(x=-113\)
a/ Ta có:
\(\frac{3}{124}=\frac{30}{1240}\) ; \(\frac{1}{41}=\frac{30}{1230}\) ; \(\frac{5}{207}=\frac{30}{1242}\) ; \(\frac{2}{83}=\frac{30}{1245}\)
Vì các phân số trên đều cùng tử nên ta so sánh mẫu : 1230<1240<1242<1242
=> \(\frac{30}{1230}>\frac{30}{1240}>\frac{30}{1242}>\frac{30}{1245}\)
Hay : \(\frac{1}{41}>\frac{3}{124}>\frac{5}{207}>\frac{2}{83}\)
b/ Ta có:
\(\frac{16}{9}=\frac{48}{27};\frac{24}{13}=\frac{48}{26}\)
Vì 27>26
=> \(\frac{16}{9}< \frac{24}{13}\)
3124=3012403124=301240 ; 141=301230141=301230 ; 5207=3012425207=301242 ; 283=301245283=301245
Vì các phân số trên đều cùng tử nên ta so sánh mẫu : 1230<1240<1242<1242
=> 301230>301240>301242>301245301230>301240>301242>301245
Hay : 141>3124>5207>283141>3124>5207>283
b/ Ta có:
169=4827;2413=4826169=4827;2413=4826
Vì 27>26
=> 169<2413169<2413
Ta có: \(\frac{x}{113}=\frac{113}{x}\) <=> \(x^2=12769\)
<=> \(x=\sqrt{12769}\)
<=> \(\left[\begin{matrix}x=113 \left(ko thỏa mãn\right)\\x=-113 \left(thỏa mãn x< 0\right)\end{matrix}\right.\)
Vậy x=-113
Đặt \(A=\left(11-\sqrt{103}\right)\left(11-\sqrt{109}\right)\left(11-\sqrt{113}\right)....\left(11-\sqrt{104}\right)\)
\(=\left(11-\sqrt{103}\right)\left(11-\sqrt{109}\right)....\left(11-\sqrt{121}\right)....\left(11-\sqrt{104}\right)\)
\(=\left(11-\sqrt{103}\right)\left(11-\sqrt{109}\right)....\left(11-11\right)....\left(11-\sqrt{104}\right)\)
\(=0\)
Do đó biểu thức trên đầu bài bằng 0
a)\(2x=3y,4y=5z\Leftrightarrow\frac{x}{3}=\frac{y}{2},\frac{y}{5}=\frac{z}{4}\Leftrightarrow\frac{x}{15}=\frac{y}{10},\frac{y}{10}=\frac{z}{8}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{8}\Leftrightarrow\frac{2x}{30}=\frac{y}{10}=\frac{2z}{16}\)
ADTCDTS=NHAU TA CÓ
\(\frac{2x}{30}=\frac{y}{10}=\frac{2z}{16}=\frac{2x+y-2z}{30+10-16}=\frac{24}{24}=1\)
x=15
y=10
z=8
b) Ta có BCNN(2,3,4)=12
\(\Rightarrow\frac{2x}{12}=\frac{3x}{12}=\frac{4z}{12}\Leftrightarrow\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\)
\(\Rightarrow\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\Leftrightarrow\frac{x^2}{36}=\frac{y^2}{16}=\frac{z^2}{9}\)
ADTCDTS=NHAU TA CÓ
\(\frac{x^2}{36}=\frac{y^2}{16}=\frac{z^2}{9}=\frac{x^2+y^2+z^2}{36+16+9}=\frac{61}{61}=1\)
\(\frac{x^2}{36}=1\Rightarrow x^2=36\Rightarrow x=+_-6\)
\(\frac{y^2}{16}=1\Rightarrow x=+_-4\)
\(\frac{z^2}{9}=1\Rightarrow z=+_-3\)
TUỰ KẾT LUẬN NHA BẠN
C)\(\frac{x-6}{3}=\frac{y-8}{4}=\frac{z-10}{5}\Leftrightarrow\frac{x^2-36}{9}=\frac{y^2-64}{16}=\frac{z^2-100}{25}\)
ADTCDTS=NHAU TA CÓ
\(\frac{x^2-36}{9}=\frac{y^2-64}{16}=\frac{z^2-100}{25}=\frac{\left(x^2-36\right)+\left(y^2-64\right)+\left(z^2-100\right)}{9+16+25}\)
\(=\frac{x^2-36+y^2-64+z^2-100}{50}=\frac{\left(x^2+y^2+z^2\right)-\left(36-64-100\right)}{50}\)
\(=\frac{\left(x^2+y^2+z^2\right)-\left(36+64+100\right)}{50}=\frac{200-200}{50}=\frac{0}{50}=0\)
\(\Rightarrow\frac{x^2-36}{9}=0\Rightarrow x^2-36=0\Rightarrow x^2=36\Rightarrow x=+_-6\)
\(\frac{y^2-64}{16}=0\Rightarrow y^2-64=0\Rightarrow y^2=64\Rightarrow y==+_-8\)
\(\frac{z^2-100}{25}=0\Rightarrow z^2-100=0\Rightarrow z^2=100\Rightarrow z=+_-10\)
TỰ KẾT LUẠN NHA
\(\frac{x-4}{2}=\frac{y-6}{3}=\frac{z-8}{4}=\frac{x}{2}-\frac{4}{2}=\frac{y}{3}-\frac{6}{3}=\frac{z}{4}-\frac{8}{4}=\frac{x}{2}-2=\frac{y}{3}-2=\frac{z}{4}-2\)
\(=>\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{2+3+4}=\frac{27}{9}=3\)
\(=>\hept{\begin{cases}x=3.2=6\\y=3.3=9\\z=3.4=12\end{cases}}\)
Bạn ko cần phải lo vì hồi hè mik làm bài này nhìu lắm rùi
Chúc bạn học giỏi nha!!!
K cho mik với nhé
\(\frac{x-4}{2}=\frac{y-6}{3}=\frac{z-8}{4}\)
\(\Rightarrow\frac{x-4+y-6+z-8}{2+3+4}\)
\(\Rightarrow\frac{\left(x+y+z\right)-18}{9}\)
\(\Rightarrow\frac{27-18}{9}=\frac{9}{9}=1\)
\(\Rightarrow\frac{x-4}{2}=1\Rightarrow x=6\)
\(\Rightarrow\frac{y-6}{3}=1\Rightarrow y=9\)
\(\Rightarrow\frac{z-8}{4}\Rightarrow z=12\)
\(\frac{210}{207}+\frac{105}{113}-\frac{3}{207}+\frac{8}{113}+27\)
\(=\left(\frac{210}{207}-\frac{3}{207}\right)+\left(\frac{105}{113}+\frac{8}{113}\right)+27\)
\(=1+1+27\)
\(=29\)
\(\frac{210}{207}+\frac{105}{113}-\frac{3}{207}+\frac{8}{113}+27\)
\(=\left(\frac{210}{207}-\frac{3}{2017}\right)+\left(\frac{105}{113}+\frac{8}{113}\right)+27\)
\(=\frac{207}{207}+\frac{113}{113}+27\)
\(=1+1+27\)
\(=29\)