Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\dfrac{2017^{18}+1}{2017^{17}+1}< \dfrac{2017^{18}+1+2016}{2017^{17}+1+2016}\)
Mà \(\dfrac{2017^{18}+1+2016}{2017^{17}+1+2016}=\dfrac{2017^{18}+2017}{2017^{17}+2017}=\dfrac{2017.\left(2017^{17}+1\right)}{2017.\left(2017^{16}+1\right)}=\dfrac{2017^{17}+1}{2017^{16}+1}=A\)
=> B < A hay :
A < B
vì 2017100 + 1 < 2017101 + 1
\(\Rightarrow\frac{2017^{100}+1}{2017^{101}+1}< \frac{2017^{100}+1+2016}{2017^{101}+1+2016}=\frac{2017^{100}+2017}{2017^{101}+2017}=\frac{2017.\left(2017^{99+1}\right)}{2017.\left(2017^{100}+1\right)}=\frac{2017^{99}+1}{2017^{100}+1}\)
Vậy \(\frac{2017^{99}+1}{2017^{100}+1}>\frac{2017^{100}+1}{2017^{101}+1}\)
so sánh 2 phân số cùng mẫu thì ta xét tử
đừng nói không làm được chứ
ta có A=\(\frac{2017^{2017}+1}{2017^{2018}+1}\)=> 2017A =\(\frac{2017^{2018}+2017}{2017^{2018}+1}=1+\frac{2016}{2017^{2018}+1}\)(1)
B=\(\frac{2017^{2018}+1}{2017^{2019}+1}\)=> 2017B =\(\frac{2017^{2019}+2017}{2017^{2019}+1}=1+\frac{2016}{2017^{2019}+1}\)(2)
So sánh (1)với (2) ta thấy 2017A>2017B
=>A>B
Vậy A>B
Ta có công thức :
\(\frac{a}{b}< \frac{a+c}{b+c}\)\(\left(\frac{a}{b}< 1;a,b,c\inℕ^∗\right)\)
Áp dụng vào ta có :
\(B=\frac{2017^{2018}+1}{2017^{2019}+1}< \frac{2017^{2018}+1+2016}{2017^{2019}+1+2016}=\frac{2017^{2018}+2017}{2017^{2017}+2017}=\frac{2017\left(2017^{2017}+1\right)}{2017\left(2017^{2016}+1\right)}=A\)
\(\Rightarrow\)\(B< A\) hay \(A>B\)
Vậy \(A>B\)
Chúc bạn học tốt ~
Đặt C = 1 + 2017 + 20172 + ... + 20172016 ; D = 1 + 2016 + 20162 + ... + 20162016
Ta có : 2017C = 2017 + 20172 + 20173 + ... + 20172017
=> 2016C = 2017C - C = 20172017 - 1\(\Rightarrow C=\frac{2017^{2017}-1}{2016}\)
2016D = 2016 + 20162 + 20163 + ... + 20162017
=> 2015D = 2016D - D = 20162017 - 1\(\Rightarrow D=\frac{2016^{2017}-1}{2015}\)
\(\Rightarrow A=\frac{2017^{2017}}{\frac{2017^{2017}-1}{2016}}=\frac{2017^{2017}.2016}{2017^{2017}-1}\);\(B=\frac{2016^{2017}}{\frac{2016^{2017}-1}{2015}}=\frac{2016^{2017}.2015}{2016^{2017}-1}\)
Ta có : 20172017.2016.(20162017 - 1) - 20162017.2015.(20172017 - 1)
= 20172017.20162017.2016 - 20172017.2016 - 20172017.20162017.2015 + 20162017.2015
= 20172017.20162017 - 20172017.2016 + 20162017.2015
= 20172017.(20162017 - 2016) + 20162017.2015 > 0
=> A > B
Ta có
\(A=1:\frac{1+2017+2017^2+...+2017^{2016}}{2017^{2017}}\)
\(B=1:\frac{1+2016+2016^2+...2016^{2016}}{2016^{2017}}\)
\(A=1:\left(\frac{1}{2017^{2017}}+\frac{1}{2017^{2016}}+\frac{1}{2017^{2015}}+...+\frac{1}{2017}\right)\)
\(B=1:\left(\frac{1}{2016^{2017}}+\frac{1}{2016^{2016}}+\frac{1}{2016^{2015}}+...+\frac{1}{2016}\right)\)
Có 20172017>20162017 ; 20172016>20162016 ; 20172015>20162015;..... ; 2017>2016
=> \(\frac{1}{2017^{2017}}< \frac{1}{2016^{2017}};\frac{1}{2017^{2016}}< \frac{1}{2016^{2016}};\frac{1}{2017^{2015}}< \frac{1}{2016^{2015}};...;\frac{1}{2017}< \frac{1}{2016}\)
=> \(\frac{1}{2017^{2017}}+\frac{1}{2017^{2016}}+\frac{1}{2017^{2015}}+...+\frac{1}{2017}< \frac{1}{2016^{2017}}+\frac{1}{2016^{2016}}+\frac{1}{2016^{2015}}+...+\frac{1}{2016}\)
=> A>B ( vì số bị chia và số chia của A và B đều dương, số bị chia của cả 2 đều là 1, cái nào có số chia nhỏ hơn thì lớn hơn)
\(A=\frac{2017^{2018}+1}{2017^{2018}-3}\)\(=\frac{2017^{2018}-3+4}{2017^{2018}-3}\)\(=1+\frac{4}{2017^{2018}-3}\)
\(B=\frac{2017^{2018}-1}{2017^{2018}-5}=\frac{2017^{2018}-5+4}{2017^{2018}-5}\)\(=1+\frac{4}{2017^{2018}-5}\)
Vì \(2017^{2018}-3>2017^{2018}-5\)(vì cái nào trừ đi ít thì còn nhiều,cái nào trừ đi nhiều thì còn ít)
\(\Rightarrow1+\frac{4}{2017^{2018}-3}< 1+\frac{4}{2017^{2018}-5}\)(vì trong 2 phân số cùng tử, phân số nào có mẫu nhỏ hơn thì lớn hơn)
\(\Rightarrow A< B\)
Mình sửa lại đề bài nha!Đề của mình mới đúng!CHÚC BẠN HỌC TỐT!
Ta có :
A = \(\frac{2017^{2018}}{2017^{2018}}+\frac{1}{-3}\)= 1 + \(\frac{1}{-3}\)
B = \(\frac{2017^{2018}-1}{2017^{2018}-5}\)= \(\frac{2017^{2018}-5}{2018^{2018}-5}+\frac{4}{2017^{2018}-5}\)= 1 + \(\frac{4}{2017^{2018}-5}\)
Mà 1 + \(\frac{4}{2017^{2018}-5}\)> 1 + \(\frac{1}{-3}\)Do đó A < B
Vậy A < B
Ta có:\(\frac{2017^{18}+1}{2017^{17}+1}>1\)
\(\Rightarrow\frac{2017^{18}+1}{2017^{17}+1}>\frac{2017^{18}+1+2016}{2017^{17}+1+2016}=\frac{2017^{18}+2017}{2017^{17}+2017}\)\(=\frac{2017\left(2017^{17}+1\right)}{2017\left(2017^{16}+1\right)}=\frac{2017^{17}+1}{2017^{16}+1}\)
Vậy \(\frac{2017^{17}+1}{2017^{16}+1}< \frac{2017^{18}+1}{2017^{17}+1}\)
Thanks you nhiều nha,lần sau nhớ giải hộ mình các bài toán khác nữa nha