Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: \(x\).(\(x-y\)) = \(\dfrac{3}{10}\) và y(\(x-y\)) = - \(\dfrac{3}{50}\)
\(x\)(\(x\) - y) - y(\(x\) - y) = \(\dfrac{3}{10}\) - ( - \(\dfrac{3}{50}\))
(\(x-y\)).(\(x-y\)) = \(\dfrac{3}{10}\) + \(\dfrac{3}{50}\)
(\(x-y\))2 = \(\dfrac{15}{50}\) + \(\dfrac{3}{50}\)
(\(x\) - y)2 = \(\dfrac{9}{25}\) = (\(\dfrac{3}{5}\))2
\(\left[{}\begin{matrix}x-y=-\dfrac{3}{5}\\x-y=\dfrac{3}{5}\end{matrix}\right.\)
TH1 \(x-y=-\dfrac{3}{5}\) ⇒ \(\left\{{}\begin{matrix}x.\left(-\dfrac{3}{5}\right)=\dfrac{3}{10}\\y.\left(-\dfrac{3}{5}\right)=-\dfrac{3}{50}\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}x=\dfrac{3}{10}:\left(-\dfrac{3}{5}\right)=\dfrac{-1}{2}\\y=-\dfrac{3}{50}:\left(-\dfrac{3}{5}\right)=\dfrac{1}{10}\end{matrix}\right.\)
TH2: \(x-y=\dfrac{3}{5}\) ⇒ \(\left\{{}\begin{matrix}x.\dfrac{3}{5}=\dfrac{3}{10}\\y.\dfrac{3}{5}=-\dfrac{3}{50}\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}x=\dfrac{3}{10}:\dfrac{3}{5}=\dfrac{1}{2}\\y=-\dfrac{3}{50}:\dfrac{3}{5}=-\dfrac{1}{10}\end{matrix}\right.\)
Vậy (\(x;y\) ) = (- \(\dfrac{1}{2}\); \(\dfrac{1}{10}\)); (\(\dfrac{1}{2}\); - \(\dfrac{1}{10}\))
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x+1}{2}=\frac{y+3}{4}\)\(=\frac{z+5}{6}\)\(=\frac{2.\left(x+1\right)+3.\left(y+3\right)+4.\left(z+5\right)}{2.2+3.4+4.6}\)
\(=\frac{2x+2+3y+9+4z+20}{4+12+24}\)\(=\frac{\left(2x+3y+4z\right)+\left(2+9+20\right)}{40}\)
\(=\frac{9+31}{40}=\frac{40}{40}=1\)
Cứ thế là tìm x+1 rồi tìm x
y+3 y
x+5 z
\(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
\(\Rightarrow\frac{5}{x}=\frac{1}{8}-\frac{y}{4}\)
\(\Rightarrow\frac{5}{x}=\frac{1-2y}{8}\)
\(\Rightarrow x\left(1-2y\right)=40\)
tu xet bang
tớ có cách khác:))
\(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
\(\Rightarrow\frac{20+xy}{4x}=\frac{1}{8}\)
\(\Rightarrow\frac{40+2xy}{8x}=\frac{x}{8x}\)
\(\Rightarrow40+2xy=x\)
\(\Rightarrow40=x\left(1-2y\right)\)
Cách này xem cho vui nha.dài hơn cách của Phương Uyên.
Theo tính chất dãy tỉ số bằng nhau
\(\frac{x-3}{7}\)=\(\frac{y+1}{2}\)=\(\frac{z+3}{4}\)=\(\frac{x-3-2y-2+3z+9}{7-4+12}\)=\(\frac{x-2y+3z+4}{15}\)=\(\frac{56+4}{15}\)=4
Có \(\frac{x-3}{7}\)=4⇒x=31
\(\frac{y+1}{2}\)=4⇒y=7
\(\frac{z+3}{4}\)=4⇒z=13
HT
\(\frac{x}{2}=\frac{y}{5}\Rightarrow\frac{x}{6}=\frac{y}{15}\)( 1 )
\(\frac{y}{3}=\frac{5z}{9}\Rightarrow\frac{y}{15}=\frac{z}{9}\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{x}{6}=\frac{y}{15}=\frac{z}{9}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\Rightarrow\frac{x}{6}=\frac{y}{15}=\frac{z}{9}=\frac{3x+2y-z}{18+30-9}=\frac{-78}{39}=-2\)
\(\Rightarrow x=-12;y=-30;z=-18\)
\(\frac{x}{2}\)= \(\frac{y}{5}\); \(\frac{y}{3}\)= \(\frac{5z}{9}\)và 3x+2y-z=-78
\(\Rightarrow\)\(\frac{x}{6}\)= \(\frac{y}{15}\); \(\frac{y}{15}\)\(\frac{5z}{45}\) và 3x+2y-z=-78
\(\Rightarrow\)\(\frac{x}{6}\)= \(\frac{y}{15}\)= \(\frac{5z}{45}\) và 3x+2y-z=-78
\(\Rightarrow\)\(\frac{3x}{18}\)= \(\frac{2y}{30}\)= \(\frac{z}{9}\) và 3x+2y-z=-78
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{3x}{18}\)= \(\frac{2y}{30}\)= \(\frac{z}{9}\)= \(\frac{3x+2y-z}{18+30-9}\)= \(\frac{-78}{39}\)= -2
Suy ra: \(\frac{x}{6}\)= -2 \(\Rightarrow\)x= 6.(-2)=-12
\(\frac{y}{15}\)= -2 \(\Rightarrow\)y= 15.(-2)=-30
\(\frac{z}{9}\)= -2 \(\Rightarrow\)z= 9.(-2)=-18
Vì \(\left|2x+1\right|\ge0;\left|x+y-\frac{1}{2}\right|\ge0\)
Mà \(\left|2x+1\right|+\left|x+y-\frac{1}{2}\right|\le0\Rightarrow\orbr{\begin{cases}2x+1=0\\x+y-\frac{1}{2}=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\y=\frac{1}{4}\end{cases}}\)(1)
Thế (1) vào A
\(\Rightarrow A=4.\left(-\frac{1}{2}\right)^3.\left(\frac{1}{4}\right)^2-\frac{1}{4}.\left(-\frac{1}{2}\right)+2.\frac{1}{4}-5\)
\(\Rightarrow A=-\frac{1}{2}+\frac{1}{8}+\frac{1}{2}-5\)
\(\Leftrightarrow A=\frac{1}{8}-5=\frac{1}{8}-\frac{40}{8}=-\frac{39}{8}\)
\(\frac{x}{4}=\frac{y}{5}=\frac{z}{6}=K\)
\(\Rightarrow\hept{\begin{cases}x=4k\\y=5k\\z=6k\end{cases}}\)
\(\Rightarrow x^2-2y^2+z^2\)
\(=\left(4k\right)^2-2.\left(5k\right)^2+\left(6k\right)^2\)
\(=4^2.k^2-2.5^2.k^2+6^2.k^2\)
\(=k^2.\left(4^2-2.5^2+6^2\right)\)
\(=k^2.102\)
=> Thiếu Đề