\(\frac{1}{x+y}+\frac{1}{x-y}=\frac{5}{8}\)

1\(\frac{1}{x+y...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 6 2016

a)Đặt \(\frac{1}{x-1}=t;\frac{1}{y-1}=m\)

Ta có: \(\frac{5}{x-1}+\frac{1}{y-1}=10=5.\frac{1}{x-1}+\frac{1}{y-1}=10=5t+m=10\)

\(\frac{1}{x-1}+\frac{3}{y-1}=t+3.\frac{1}{y-1}=t+3m=18\)

Từ đây ta có HPT \(\hept{\begin{cases}5t+m=10\left(1\right)\\t+3m=18\left(2\right)\end{cases}}\)

\(5t+m=10\Rightarrow5t=10-m\Rightarrow t=\frac{10-m}{5}\),thay vào (2) ta có:

\(\frac{10-m}{5}+3m=18\Rightarrow\frac{10-m+15m}{5}=18\Rightarrow\frac{10+14m}{5}=18\)

=>10+14m=18.5=90=>14m=90-10=>14m=80=>m=\(\frac{40}{7}\)

Thay m=40/7 vào (1)=>t=6/7

\(\frac{1}{x-1}=t\Rightarrow\frac{1}{x-1}=\frac{6}{7}\Rightarrow\left(x-1\right).6=7\Rightarrow6x-6=7\Rightarrow x=\frac{13}{6}\)

\(\frac{1}{y-1}=m\Rightarrow\frac{1}{y-1}=\frac{40}{7}\Rightarrow\left(y-1\right).40=7\Rightarrow40y-40=7\Rightarrow y=\frac{47}{40}\)

Vậy x=13/6;y=47/40 thì thỏa mãn HPT

mk hết hè lên lp 8 nên cũng không chắc 100% nhé

1 tháng 6 2016

b/ Đặt \(\frac{1}{x+2y}=a\) ; \(\frac{1}{x-2y}=b\) , ta có hệ phương trình: \(\hept{\begin{cases}4a-b=1\\20a+3b=1\end{cases}\Rightarrow\hept{\begin{cases}b=4a-1\\20a+3\left(4a-1\right)=1\end{cases}\Rightarrow}\hept{\begin{cases}b=4a-1\\20a+12a-3=1\end{cases}}\Rightarrow\hept{\begin{cases}b=4a-1\\a=\frac{1}{8}\end{cases}\Rightarrow}\hept{\begin{cases}b=-\frac{1}{2}\\a=\frac{1}{8}\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}\frac{1}{x-2y}=-\frac{1}{2}\\\frac{1}{x+2y}=\frac{1}{8}\end{cases}\Rightarrow\hept{\begin{cases}x-2y=-2\\x+2y=8\end{cases}\Rightarrow}\hept{\begin{cases}x=-2+2y\\-2+2y+2y=8\end{cases}\Rightarrow}\hept{\begin{cases}x=-2+2y\\y=\frac{5}{2}\end{cases}\Rightarrow}\hept{\begin{cases}x=3\\y=\frac{5}{2}\end{cases}}}\)

           Vậy x = 3 , y = 5/2 

c/ Đặt \(\frac{1}{x-3}=a\) ; \(\frac{1}{y+2}=b\) , ta có hệ phương trình: 

     \(\hept{\begin{cases}12a-5b=63\\8a+15b=-13\end{cases}\Rightarrow\hept{\begin{cases}b=\frac{12a-63}{5}\\8a+15\left(\frac{12a-63}{5}\right)=-13\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}b=\frac{12a-63}{5}\\8a+\frac{180a-945}{5}=-13\end{cases}}\)

       \(\Rightarrow\hept{\begin{cases}b=\frac{12a-63}{5}\\a=4\end{cases}\Rightarrow\hept{\begin{cases}b=-3\\a=4\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}\frac{1}{y+2}=-3\\\frac{1}{x-3}=4\end{cases}\Rightarrow\hept{\begin{cases}-3y-6=1\\4x-12=1\end{cases}}\Rightarrow\hept{\begin{cases}y=-\frac{7}{3}\\x=\frac{13}{4}\end{cases}}}\)

             Vậy x = 13/4 , y = -7/3

d/ Đặt \(\frac{1}{x+y-3}=a\) ; \(\frac{1}{x-y+1}=b\) , ta có hệ phương trình:

         \(\hept{\begin{cases}5a-2b=8\\3a+b=1,5\end{cases}\Rightarrow\hept{\begin{cases}5a-2\left(\frac{3}{2}-3a\right)=8\\b=\frac{3}{2}-3a\end{cases}\Rightarrow}\hept{\begin{cases}5a-3+6a=8\\b=\frac{3}{2}-3a\end{cases}\Rightarrow}\hept{\begin{cases}a=1\\b=-\frac{3}{2}\end{cases}}}\)

         \(\Rightarrow\hept{\begin{cases}\frac{1}{x+y-3}=1\\\frac{1}{x-y+1}=-\frac{3}{2}\end{cases}\Rightarrow\hept{\begin{cases}x+y-3=0\\-3x+3y-3=2\end{cases}\Rightarrow}\hept{\begin{cases}x+y=3\\-3x+3y=5\end{cases}}}\)

          \(\Rightarrow\hept{\begin{cases}x=3-y\\-3\left(3-y\right)+3y=5\end{cases}\Rightarrow\hept{\begin{cases}x=3-y\\-9+3y+3y=5\end{cases}\Rightarrow}\hept{\begin{cases}x=3-y\\y=\frac{7}{3}\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{2}{3}\\y=\frac{7}{3}\end{cases}}}\)

                          Vậy x = 2/3 ; y = 7/3 

13 tháng 7 2016

a) Ta có : \(x+y+\frac{2}{x}+\frac{2}{y}=\left(2x+\frac{2}{x}\right)+\left(2y+\frac{2}{y}\right)-\left(x+y\right)\)

Áp dụng bất đẳng thức Cauchy, ta có : \(2x+\frac{2}{x}\ge2\sqrt{2x.\frac{2}{x}}=4\) (1)

Tương tự : \(2y+\frac{2}{y}\ge2\sqrt{2y.\frac{2}{y}}=4\)(2)   ;   \(x+y\le2\Rightarrow-\left(x+y\right)\ge-2\)(3)

Cộng (1) , (2) , (3) theo vế được: \(\left(2x+\frac{2}{x}\right)+\left(2y+\frac{2}{y}\right)-\left(x+y\right)\ge4+4-2=6\)

Hay \(x+y+\frac{2}{x}+\frac{2}{y}\ge6\) (đpcm)

b) Áp dụng bất đẳng thức \(x^2+y^2+z^2\ge xy+yz+zx\) được : 

\(a^8+b^8+c^8=\left(a^4\right)^2+\left(b^4\right)^2+\left(c^4\right)^2\ge\left(ab\right)^4+\left(bc\right)^4+\left(ca\right)^4\)

Tương tự : \(\left(a^2b^2\right)^2+\left(b^2c^2\right)^2+\left(c^2a^2\right)^2\ge a^2b^4c^2+b^2c^4a^2+c^2a^4b^2\)

\(\Rightarrow a^4+b^4+c^4\ge a^2b^2c^2\left(a^2+b^2+c^2\right)\)

\(\Rightarrow a^8+b^8+c^8\ge a^2b^2c^2\left(a^2+b^2+c^2\right)\)

\(\Rightarrow\frac{a^8+b^8+c^8}{a^3b^3c^3}\ge\frac{a^2b^2c^2\left(a^2+b^2+c^2\right)}{a^3b^3c^3}=\frac{a^2+b^2+c^2}{abc}\ge\frac{ab+bc+ac}{abc}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

24 tháng 12 2016

2,  xy/(x+y)=2/3 <=> (x+y)/xy=3/2 <=> 1/x + 1/y = 3/2 (1)

tương tự,ta có 1/y + 1/z =5/6 (2) , 1/z + 1/x = 4/3 (3)

cộng từng vế các đẳng thức trên ta được:

2(1/x + 1/y + 1/z) = 11/3 => 1/x + 1/y + 1/z = 11/6 (*)

Lấy (*) trừ cho (1) => 1/z = 1/3 => z=3

Tương tự tìm được x,y

24 tháng 12 2016

3/x + 5/y = -3/2 <=>5(3/x + 5/y) = 5.(-3/2)

<=>15/x + 25/y = -15/2 (1)

5/x - 2/y = 8/3 <=> 3(5x - 2/y) = 3.8/3 

<=>15/x - 6y = 8 (2)

Lấy (1) trừ cho (2):

(15/x + 25/y) - (15/x - 6/y) = -15/2 - 8

<=>31/y=-31/2=>y=-2 => x=......

11 tháng 10 2020

b) đk: \(\hept{\begin{cases}x\ne0\\x\ne1\end{cases}}\)

pt (1) \(\Leftrightarrow\left(x^2-2x\right)\left(x^2-2x+4\right)=0\Leftrightarrow x\left(x-2\right)\left(x^2-2x+4\right)=0\Leftrightarrow x=0\left(L\right),x=2\left(T\right)\)\(,x^2-2x+4=0\left(3\right)\)

pt(3) VÔ NGHIỆM vì \(\Delta'=1-4=-3< 0\)

Thay x=2 vào pt (2) ta được: \(\frac{1}{2}+\frac{1}{y-1}=\frac{3}{2}\Leftrightarrow\frac{1}{y-1}=1\Leftrightarrow y-1=1\Leftrightarrow x=2\left(tm\right)\)

Vậy nghiệm của hệ pt là(x;y)=(2;2)

7 tháng 6 2020

d)

Đặt \(\frac{1}{x-1}=a;\frac{1}{y+2}=b\) ta được

\(\left\{{}\begin{matrix}8a+15b=1\\a+b=12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\frac{179}{7}\\b=\frac{-95}{7}\end{matrix}\right.\)

thay lại ta đc

\(\frac{1}{x-1}=\frac{179}{7}\Leftrightarrow179x=186\Rightarrow x=\frac{186}{179}\)

\(\frac{1}{y+2}=\frac{-95}{7}\Leftrightarrow-95y=197\Rightarrow y=\frac{-195}{7}\)

ý d mk ko bt là đúng hay ko đâu

7 tháng 6 2020

ý b dễ nên mk giải ý c và d thôi nha

\(\left\{{}\begin{matrix}\frac{3}{5x}+\frac{1}{y}=\frac{1}{10}\\\frac{3}{4x}+\frac{3}{4y}=\frac{1}{12}\end{matrix}\right.\) Đặt \(\frac{3}{x}=a:\frac{1}{y}=b\) ta đcc

\(\left\{{}\begin{matrix}\frac{a}{5}+b=\frac{1}{10}\\\frac{a}{4}+\frac{3b}{4}=\frac{1}{12}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2a+10=1\\3a+9b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\frac{1}{12}\\b=\frac{1}{12}\end{matrix}\right.\)

thay lại ta được

\(\frac{3}{x}=\frac{1}{12}\Rightarrow x=36\)

\(\frac{1}{y}=\frac{1}{12}\Rightarrow y=12\)

26 tháng 5 2017

bạn chỉ cần cố gắng là làm được

26 tháng 5 2017

qui đồng đy :v

7 tháng 9 2021

mấy bài này thì bạn cứ đặt ẩn phụ cho dễ nhìn hơn mà giải nhé 

a, \(\hept{\begin{cases}\frac{1}{2x-y}+x+3y=\frac{3}{2}\\\frac{4}{2x-y}-5\left(x+3y\right)=-3\end{cases}}\)ĐK : \(2x\ne y\)

Đặt \(\frac{1}{2x-y}=t;x+3y=u\)hệ phương trình tương đương 

\(\hept{\begin{cases}t+u=\frac{3}{2}\\4t-5u=-3\end{cases}\Leftrightarrow\hept{\begin{cases}4t+4u=6\\4t-5u=-3\end{cases}}\Leftrightarrow\hept{\begin{cases}9u=9\\4t=-3+5u\end{cases}}\Leftrightarrow\hept{\begin{cases}u=1\\t=\frac{-3+5}{4}=\frac{1}{2}\end{cases}}}\)

Theo cách đặt \(\hept{\begin{cases}x+3y=1\\\frac{1}{2x-y}=\frac{1}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}x+3y=1\\2x-y=2\end{cases}}\Leftrightarrow\hept{\begin{cases}2x+6y=2\\2x-y=2\end{cases}\Leftrightarrow}\hept{\begin{cases}7y=4\\x=\frac{y+2}{2}\end{cases}\Leftrightarrow}\hept{\begin{cases}y=\frac{4}{7}\\x=\frac{9}{7}\end{cases}}}\)

Vậy hệ pt có một nghiệm (x;y) = (9/7;4/7)