K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2017

ra âm 98/99

26 tháng 2 2017

cách làm thế nào bạn

31 tháng 3 2017

Đặt \(A=\frac{1}{99.97}-\frac{1}{97.95}-\frac{1}{95.93}-...-\frac{1}{5.3}-\frac{1}{3.1}\)

\(A=\frac{1}{99.97}-\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{93.95}+\frac{1}{95.97}\right)\)

\(A=\frac{1}{99.97}-\left(\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{93}-\frac{1}{95}+\frac{1}{95}-\frac{1}{97}\right)\right)\)

\(A=\frac{1}{99.97}-\left(\frac{1}{2}.\left(1-\frac{1}{97}\right)\right)=\frac{1}{99.97}-\frac{1}{2}.\frac{96}{97}=\frac{1}{99.97}-\frac{48}{97}=-\frac{4751}{9603}\)

29 tháng 12 2017

bn tách  1/ 97 .95 = 1/2 . ( 1/95 -1/97) nha! rồi sử dụng phương pháp khử liên tiếp ! 

6 tháng 12 2018

123987564210

5 tháng 2 2016

bây giờ mìh ban rồi, mìh chỉ có thể chỉ cho bn cách làm thôi

dat bieu thuc la A

2A=2*(...)

2A=2/...-2/...

2A=(1/99-1/97)-(1/97-1/95)-...

2A=1/99-1=-98/99

A=...=-49/99

DUYỆT NHÉ

mìh cũng ko chắc chắn lắm đâu đấy nhé

 

18 tháng 3 2017

bài này có thể sai đề, viết lại

25 tháng 6 2017

\(\frac{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}}{\frac{1}{1.99}+\frac{1}{3.97}+\frac{1}{5.99}+...+\frac{1}{99.1}}\)

\(=\frac{\left(1+\frac{1}{99}\right)+\left(\frac{1}{3}+\frac{1}{97}\right)+...+\left(\frac{1}{49}+\frac{1}{51}\right)}{2\left(\frac{1}{1.99}+\frac{1}{3.97}+...+\frac{1}{49.51}\right)}\)

\(=\frac{\frac{100}{1.99}+\frac{100}{3.97}+...+\frac{100}{49.51}}{2\left(\frac{1}{1.99}+\frac{1}{3.97}+...+\frac{1}{49.51}\right)}\)

\(=\frac{100\left(\frac{1}{1.99}+\frac{1}{3.97}+...+\frac{1}{49.51}\right)}{2\left(\frac{1}{1.99}+\frac{1}{3.97}+...+\frac{1}{49.51}\right)}\)

\(=\frac{100}{2}=50\)

16 tháng 7 2017

50 nha

\(=\dfrac{1}{99\cdot97}-\left(\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+...+\dfrac{1}{95\cdot97}\right)\)

\(=\dfrac{1}{99\cdot97}-\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{95\cdot97}\right)\)

\(=\dfrac{1}{99\cdot97}-\dfrac{1}{2}\cdot\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{95}-\dfrac{1}{97}\right)\)

\(=\dfrac{1}{99\cdot97}-\dfrac{48}{97}=\dfrac{1-48\cdot99}{97\cdot99}=\dfrac{-4751}{9603}\)

30 tháng 12 2015

\(\frac{1}{99.97}-\frac{1}{97.95}-...-\frac{1}{3.1}\)

\(\frac{1}{99}-\frac{1}{97}-\frac{1}{97}-\frac{1}{95}-...-\frac{1}{3}-1\)

\(\frac{1}{99}-1\)

\(-\frac{98}{99}\)