\(\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{2007^2}>\frac{1}{5}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2019

#)Giải :

Ta có : \(\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{2007^2}>\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{2007.2008}\)

\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{2007}-\frac{1}{2008}=\frac{1}{5}-\frac{1}{2008}=\frac{2003}{10004}>\frac{1}{5}\)

\(\Rightarrow\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{2007^2}>\frac{1}{5}\)

1 tháng 8 2019

\(\frac{1}{5}-\frac{1}{2018}>\frac{1}{5}????\)

3 tháng 4 2016

a) \(\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{2007^2}<\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+...+\frac{1}{2006\cdot2007}\)

=>              \(<\frac{1}{4}-\frac{1}{2007}<\frac{1}{4}\)

\(vậy:\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{2007^2}<\frac{1}{4}\)

b) \(\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{2007^2}>\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+...+\frac{1}{2007\cdot2008}\)

=>    \(>\frac{1}{5}-\frac{1}{2008}>\frac{1}{5}\)

\(vậy:\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{2007^2}>\frac{1}{5}\)

3 tháng 4 2016

cảm ơn bạn nha

17 tháng 8 2017

Ta có : 1/5^2 + 1/6^2 + 1/7^2 +....+ 1/2007^2 > 1/5.6 + 1/6.7 + 1/7.8 +...+ 1/2007.2008 = 1/5 - 1/6 + 1/6 - 1/7 + 1/7 - 1/8 +....+ 1/2007 - 1/2008 = 1/5 -1/2008 ko > 1/5

18 tháng 8 2017

nhưng cái biểu thức nó cũng lớn hơn cái biểu thức bạn đưa ra nên ko thể chứng minh nó >\(\frac{1}{5}\)

2 tháng 8 2017

Đặt :

\(A=\frac{1}{5^2}+\frac{1}{6^2}+.........+\frac{1}{2007^2}\)

Ta thấy :

\(\frac{1}{5^2}>\frac{1}{5.6}\)

\(\frac{1}{6^2}>\frac{1}{6.7}\)

...........................

\(\frac{1}{2007^2}>\frac{1}{2007.2008}\)

\(\Leftrightarrow A>\frac{1}{5.6}+\frac{1}{6.7}+........+\frac{1}{2007.2008}\)

\(\Leftrightarrow A>\frac{1}{5}-\frac{1}{6}+\frac{1}{7}-\frac{1}{8}+......+\frac{1}{2007}-\frac{1}{2008}\)

\(\Leftrightarrow A>\frac{1}{5}-\frac{1}{2008}>\frac{1}{5}\)

\(\Leftrightarrow A>\frac{1}{5}\)

18 tháng 3 2018

Cho mình lời giải đầy đủ nhé! * xin lỗi mấy bạn do lỗi phông*