Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{2}+\left(\frac{16}{21}+\frac{27}{13}\right)-\left(\frac{14}{13}-\frac{5}{21}\right)\)
\(=\frac{1}{2}+\frac{16}{21}+\frac{27}{13}-\frac{14}{13}+\frac{5}{21}\)
\(=\left(\frac{16}{21}+\frac{5}{21}\right)+\left(\frac{27}{13}-\frac{14}{13}\right)+\frac{1}{2}\)
\(=1+1+\frac{1}{2}\)
\(=\frac{5}{2}\)
#)Giải :
\(\frac{1}{2}+\left(\frac{16}{21}+\frac{27}{13}\right)-\left(\frac{14}{13}-\frac{5}{21}\right)\)
\(=\frac{1}{2}+\frac{16}{21}+\frac{27}{13}-\frac{14}{13}+\frac{5}{21}\)
\(=\frac{1}{2}+\left(\frac{16}{21}+\frac{5}{21}\right)+\left(\frac{27}{13}-\frac{14}{13}\right)\)
\(=\frac{1}{2}+1+1\)
\(=2\frac{1}{2}=\frac{5}{2}\)
a) \(\frac{17}{9}-\frac{17}{9}:\left(\frac{7}{3}+\frac{1}{2}\right)\)
= \(\frac{17}{9}-\frac{17}{9}:\frac{17}{6}\)
= \(\frac{17}{9}-\frac{2}{3}\)
= \(\frac{11}{9}\)
b) \(\frac{4}{3}.\frac{2}{5}-\frac{3}{4}.\frac{2}{5}\)
= \(\frac{2}{5}.\left(\frac{4}{3}-\frac{3}{4}\right)\)
= \(\frac{2}{5}.\frac{7}{12}\)
= \(\frac{7}{30}\)
Mình lười làm quá, hay mình nói kết quả cho bn thôi nha
c) -6
d) 3
e) 3
g) 12
h) \(\frac{23}{18}\)
i) \(\frac{-69}{20}\)
k) \(\frac{-1}{2}\)
l) \(\frac{49}{5}\)
A) \(\frac{7}{\left(x+3\right)\left(x+10\right)}+\frac{11}{\left(x+10\right)\left(x+21\right)}+\frac{13}{\left(x+21\right)\left(x+34\right)}\)
\(=\frac{\left(x+10\right)-\left(x+3\right)}{\left(x+3\right)\left(x+10\right)}+\frac{\left(x+21\right)-\left(x+10\right)}{\left(x+10\right)\left(x+21\right)}+\frac{\left(x+34\right)-\left(x+21\right)}{\left(x+21\right)\left(x+34\right)}\)
\(=\frac{1}{x+3}-\frac{1}{x+10}+\frac{1}{x+10}-\frac{1}{x+21}+\frac{1}{x+21}-\frac{1}{x+34}\)
\(=\frac{1}{x+3}-\frac{1}{x+34}\)
\(=\frac{\left(x+34\right)-\left(x+3\right)}{\left(x+3\right)\left(x+34\right)}\)\(=\frac{x}{\left(x+3\right)\left(x+34\right)}\)
\(\Rightarrow\left(x+34\right)-\left(x+3\right)=x\)
\(\Rightarrow x=31\)
Vậy, x = 31
Bạn áp dụng: \(\frac{k}{x\cdot\left(x+k\right)}=\frac{1}{x}-\frac{1}{x+k}\) với \(x,k\inℝ;x\ne0;x\ne-k\)
Chứng minh: \(\frac{1}{x}-\frac{1}{x+k}=\frac{x+k}{x\left(x+k\right)}-\frac{x}{x\left(x+k\right)}=\frac{x+k-x}{x\left(x+k\right)}=\frac{k}{x\left(x+k\right)}\)
45/26