Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left(\frac{x-1}{2012}-1\right)+\left(\frac{x-2}{2011}-1\right)+...+\left(\frac{x-2012}{1}-1\right)=0\)
\(\Leftrightarrow\frac{x-2013}{2012}+\frac{x-2013}{2011}+...+\frac{x-2013}{1}=0\)
\(\Leftrightarrow\left(x-2013\right)\left(\frac{1}{2012}+\frac{1}{2011}+....+1\right)=0\)
\(\Leftrightarrow x-2013=0\)(because 1/2012 +1/2011+...+1 luôn lớn hơn 0
\(\Leftrightarrow x=2013\)
Vậy ........
bạn bấm vào đúng 0 sẽ ra kết quả
mình làm bài này rồi
Ta có: Tử là:
B=\(\frac{1}{2013}+\frac{2}{2012}+...+\frac{2012}{2}+\left(1+1+...+1\right)\) (2013 số hạng 1)
=\(\left(\frac{1}{2013}+1\right)+\left(\frac{2}{2012}+1\right)+...+\left(\frac{2012}{2}+1\right)+\left(1\right)\)
=\(\frac{2014}{2013}+\frac{2014}{2012}+...+\frac{2014}{2}+\frac{2014}{2014}\)
=\(2014\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}+\frac{1}{2014}\right)\)
=>A=\(\frac{2014\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}}\)=2014
bấm vào đúng 0 sẽ ra kết quả, mình làm bài này rồi dễ lắm bạn ạ
\(\frac{x+1}{2012}+\frac{x+2}{2011}=\frac{x+3}{2010}+\frac{x+4}{2009}\)
\(\Leftrightarrow\frac{x+1}{2012}+1+\frac{x+2}{2011}+1=\frac{x+3}{2010}+1+\frac{x+4}{2009}+1\)
\(\Leftrightarrow\frac{x+2013}{2012}+\frac{x+2013}{2011}=\frac{x+2013}{2010}+\frac{x+2013}{2009}\)
\(\Leftrightarrow\left(x+2013\right)\left(\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2010}-\frac{1}{2009}\right)=0\Leftrightarrow x=-2013\)
\(\frac{x+1}{2012}+\frac{X+2}{2011}=\frac{X+3}{2010}+\frac{X+4}{2009}.\)
\(\Leftrightarrow\frac{X+1}{2012}+\frac{X+2}{2011}+2=\frac{X+3}{2010}+\frac{X+4}{2009}+2\)
\(\Leftrightarrow\frac{x+1}{2012}+1+\frac{x+2}{2011}+1=\frac{x+3}{2010}+1+\frac{x+4}{2009}+1\)
\(\Leftrightarrow\frac{x+2013}{2012}+\frac{x+2013}{2012}=\frac{x+2013}{2010}+\frac{x+2013}{2009}\)
\(\Leftrightarrow\left(x+2013\right).\left\{\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2010}-\frac{1}{2009}\right\}=0\)
Mà \(\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2010}-\frac{1}{2009}>0\)
\(\Leftrightarrow x+2013=0\)
\(\Leftrightarrow x=-2013\)
KL ; PT có Nghiệm \(S=\left\{-2013\right\}\)
Ta có: \(\frac{x-1}{2012}+\frac{x-2}{2011}+...+\frac{x-2012}{1}=2012\)
\(\Leftrightarrow\frac{x-1}{2012}-1+\frac{x-2}{2011}-1+\frac{x-3}{2010}-1+....+\frac{x-2012}{1}-1=2012-2012\)
\(\Leftrightarrow\frac{x-2013}{2012}+\frac{x-2013}{2011}+\frac{x-2013}{2010}+...+\frac{x-2013}{1}=0\)
\(\Leftrightarrow\left(x-2013\right)\left(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2011}+....+1\right)=0\)
Vì \(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}+...+1\ne0\)
\(\Rightarrow x+2013=0\)
\(\Rightarrow x=2013\)
Vậy x = 2013
PT đã cho tương đương với:
\(\frac{x-1}{2012}-1+\frac{x-2}{2011}-1+\frac{x-3}{2010}-1+...+\frac{x-2012}{1}-1+2010=2012\)
\(\Leftrightarrow\frac{x-2013}{2012}+\frac{x-2013}{2011}+\frac{x-2013}{2010}+...+\frac{x-2013}{1}=0\)
\(\Leftrightarrow\left(x-2013\right).\left(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}+...+\frac{1}{1}\right)=0\)
\(\Leftrightarrow x=2013\)
Phương trình đã cho tương đương với :
\(\frac{x-1}{2012}-1+\frac{x-2}{2011}-1+\frac{x-3}{2010}-1+...+\frac{x-2012}{1}-1+2012=2012\)
\(\Leftrightarrow\)\(\frac{x-2013}{2012}+\frac{x-2013}{2011}+\frac{x-2013}{2010}+...+\frac{x-2013}{1}=0\)
\(\Leftrightarrow\)\(\left(x-2013\right)\left(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}+...+\frac{1}{1}\right)=0\)
Tìm x theo như toán lớp 6 nha
\(x-2013=0\)
\(\Leftrightarrow\)\(x=2013\)
ta có pt
<=>\(\frac{x-1}{2012}-1+\frac{x-2}{2011}-1+...+\frac{x-2012}{1}-1=0\)
<=>\(\frac{x-2013}{2012}+\frac{x-2013}{2011}+...+\frac{x-2013}{1}=0\)
<=>\(\left(x-2013\right)\left(\frac{1}{2012}+\frac{1}{2011}+...+\frac{1}{1}\right)=0\Leftrightarrow x-2013=0\Leftrightarrow x=2013\)
^_^