K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2018

\(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{2n.\left(2n+2\right)}\))

\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2n}-\frac{1}{2n+2}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{2n+2}\right)\)

\(=\frac{1}{4}-\frac{1}{2.\left(2n+2\right)}\)

\(=\frac{1}{4}-\frac{1}{4n+4}=\frac{1}{4}-\frac{1}{4.\left(n+1\right)}\)

\(=\frac{n+1}{4.\left(n+1\right)}-\frac{1}{4.\left(n+1\right)}=\frac{n+1-1}{4.\left(n+1\right)}=\frac{n}{4.\left(n+1\right)}\)

15 tháng 7 2018

bạn ơi mình ko hiểu chỗ \(\frac{1}{4}-\frac{1}{2.\left(2n+2\right)}\)

1 tháng 6 2020

tự làm là hạnh phúc của mỗi công dân.

1 tháng 6 2020

tự làm là hạnh phúc của mỗi công dân.

7 tháng 9 2016

\(A=\frac{1}{1.3}-\frac{1}{2.4}+\frac{1}{3.5}-\frac{1}{4.6}+\frac{1}{5.7}-\frac{1}{6.8}+\frac{1}{7.9}-\frac{1}{8.10}\)

\(A=\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}\right)-\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+\frac{1}{8.10}\right)\)

\(A=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}\right)-\frac{1}{2}\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+\frac{2}{8.10}\right)\)

\(A=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-\frac{1}{10}\right)\)

\(A=\frac{1}{2}\left(1-\frac{1}{9}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{10}\right)\)

\(A=\frac{4}{9}-\frac{1}{5}=\frac{11}{45}\)

7 tháng 9 2016

\(S=\frac{1}{1.3}-\frac{1}{2.4}+\frac{1}{3.5}-\frac{1}{4.6}+\frac{1}{5.7}-\frac{1}{6.8}+\frac{1}{7.9}-\frac{1}{8.10}\)

\(S=\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}\right)-\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+\frac{1}{8.10}\right)\)

\(S=\frac{1}{2}\left(1-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{9}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{10}\right)\)

\(S=\frac{1}{2}\left(1-\frac{1}{9}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{10}\right)\)

\(S=\frac{1}{2}.\frac{8}{9}-\frac{1}{2}.\frac{2}{5}\)

\(S=\frac{4}{9}-\frac{1}{5}\)

\(S=\frac{11}{45}\)

20 tháng 2 2016

=1/2-1/4+1/4-1/6+....+1/98-1/100

=1/2-1/100

=49/100

20 tháng 2 2016

=1/2-1/4+1/4-1/6+ ... +1/98-1/100

=1/2-1/100

=49/100

24 tháng 10 2016

=\(\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{2.4}+...+\frac{2}{8.10}\right)\)

\(\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+....+\frac{1}{8}-\frac{1}{10}\right)\)

\(\frac{1}{2}.\left(1+\frac{1}{2}-\frac{1}{9}-\frac{1}{10}\right)\)

=\(\frac{29}{45}\)

24 tháng 10 2016

29/45 bạn nhé

18 tháng 9 2019

\(B=\left(1-\frac{3}{2.4}\right)\left(1-\frac{3}{3.5}\right)\left(1-\frac{3}{4.6}\right)...\left(1-\frac{3}{n\left(n+2\right)}\right)\)

\(=\frac{1.5}{2.4}.\frac{2.6}{3.5}.\frac{3.7}{4.6}...\frac{\left(n-1\right)\left(n+3\right)}{n\left(n+2\right)}\)

\(=\frac{\left[1.2.3...\left(n-1\right)\right]\left[5.6.7...\left(n+3\right)\right]}{\left(2.3.4...n\right)\left[4.5.6...\left(n+2\right)\right]}\)

\(=\frac{n+3}{4n}< 2\left(đpcm\right)\)

24 tháng 8 2019

Bài làm

D=ko viết lại đề

=1/1.3+1/1.5+1/5.7+1/7.9-1/2.4-1/4.6-1/6.8-1/8.10

=1+1/9-1-1/10

=10/9-9/10

=19/90

=(1/1.3+...+1/7.9)-(1/2.4+...+1/8.10)

=2(1/1.3+...+1/7.9)-2(1/2.4+...+1/8.10)

=(2/1.3+...+2/7.9)-(2/2.4+...+2/8.10)

=(1-1/3+...+1/7-1/9)-(1/2-1/4+   +1/8-1/10)

=1-1/9-1/2+1/10

tự tính tiếp nhé