Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mik lười quá bạn tham khảo câu 3 tại đây nhé:
Câu hỏi của nguyen linh nhi - Toán lớp 6 - Học toán với OnlineMath
\(S=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+...+\frac{1}{37\cdot38\cdot39}\)
\(2S=\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{37\cdot38}-\frac{1}{38\cdot39}\)
\(2S=\frac{1}{2}-\frac{1}{38\cdot39}\)
\(S=\frac{1}{4}-\frac{1}{2\cdot38\cdot39}< \frac{1}{4}\)
1 : dễ mà
= \(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n}-\frac{1}{n+1}\)
1 phần 1 - 1 phần 2 = 1 phần 1.2 mà tương tự như thế đó
=> 1 - 1 phần n+1
đS
\(\frac{1}{1.2}+\frac{1}{2.3}+..........+\frac{1}{n.\left(n+1\right)}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+............+\frac{1}{n}-\frac{1}{n+1}\)
\(=1-\frac{1}{n+1}\)
\(=\frac{n}{n+1}\)
Bài 2:Ta có:\(\frac{1}{2^2}<\frac{1}{1.2};\frac{1}{3^2}<\frac{1}{2.3};.................;\frac{1}{n^2}<\frac{1}{\left(n-1\right).n}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...........+\frac{1}{n^2}<\frac{1}{1.2}+\frac{1}{2.3}+.........+\frac{1}{\left(n-1\right).n}\)
=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...........+\frac{1}{n-1}-\frac{1}{n}\)
=\(1-\frac{1}{n}<1\)
Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+...........+\frac{1}{n^2}<1\)
Ta co:\(\frac{1}{2^2}=\frac{1}{4}<\frac{1}{1.2}......\frac{1}{10}^2=\frac{1}{10.10}\)\(\)
\(a)\) Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2010^2}\) ta có :
\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2009.2010}\)
\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2009}-\frac{1}{2010}\)
\(A< 1-\frac{1}{2010}=\frac{2009}{2010}< 1\)
\(\Rightarrow\)\(A< 1\) ( đpcm )
Vậy \(A< 1\)
Chúc bạn học tốt ~
Đặt tổng trên là A
Ta có: 2A=\(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{n-1}}\)
2A-A=A=\(\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{n^{n-1}}\right)-\left(\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^n}\right)\)
A=\(\frac{1}{2}-\frac{1}{2^n}\)
Vậy A<1 (đpcm)