Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
có 2014/1+2013/2+2012/3+...+2/2013+1/2014=[1+(2013/2)]+[1+(2012/3)]+...+[1+(2/2013)]+[1+(1/2014)]+1
=2015/2+2015/3+...+2015/2014+2015/2015=2015.[1/2+1/3+..+1/2015)
vậy (1/2+1/3+...+1/2015).x=(1/2+1/3+...+1/2015).2015
x=2015
Ta có
\(\frac{2014}{1}+\frac{2015}{2}+...+\frac{4026}{2013}=1+1+...+1+\left[\left(\frac{2014}{1}-1\right)+\left(\frac{2015}{2}-1\right)+...+\left(\frac{4026}{2013}-1\right)\right]\)
\(=2013+\left(\frac{2013}{1}+\frac{2013}{2}+...+\frac{2013}{2013}\right)=2013+2013\left(1+\frac{1}{2}+...+\frac{1}{2013}\right)\) (1)
Ta kết hợp (1) và đề
=>\(\left(1+\frac{1}{2}+...+\frac{1}{2013}\right)x+2013=2013+2013\left(1+\frac{1}{2}+...+\frac{1}{2013}\right)\)
=> x=2013
\(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}\right)x+2013=\frac{2014}{1}+\frac{2015}{2}+...+\frac{4025}{2012}+\frac{4026}{2013}\)
\(\Leftrightarrow\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}\right)x=\left(\frac{2014}{1}-1\right)+\left(\frac{2015}{2}-1\right)+...+\left(\frac{4025}{2012}-1\right)+\left(\frac{4026}{2013}-1\right)\)
\(\Leftrightarrow\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}\right)x=\frac{2013}{1}+\frac{2013}{2}+...+\frac{2013}{2012}+\frac{2013}{2013}\)
\(\Leftrightarrow\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}\right)x=2013\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}\right)\)
\(\Rightarrow x=\frac{2013\left(1+\frac{1}{2}+\frac{1}{3}+..+\frac{1}{2013}\right)}{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}}=2013\)
Vậy x = 2013 thoả mãn đề bài.
\(TA-CO':\)
\(A=\frac{4+\frac{7}{2014}-\frac{7}{2015}+\frac{7}{2012}-\frac{7}{2013}}{7+\frac{7}{2014}-\frac{7}{2015}+\frac{7}{2012}-\frac{7}{2013}}\)
\(A=\frac{4\left(\frac{1}{2014}-\frac{1}{2015}+\frac{1}{2012}-\frac{1}{2013}\right)}{7\left(\frac{1}{2014}-\frac{1}{2015}+\frac{1}{2012}-\frac{1}{2013}\right)}\)
\(A=\frac{4}{7}\)
\(B=\frac{1+2+...+2^{2013}}{2^{2015}-2}\)
ĐẶT \(C=1+2+...+2^{2013}\)
\(\Rightarrow2C=2+2^2+...+2^{2014}\)
\(\Rightarrow2C-C=\left(2+2^2+...+2^{2014}\right)-\left(1+2+...+2^{2013}\right)\)
\(\Rightarrow C=2^{2014}-2\)
\(\Rightarrow B=\frac{2^{2014}-1}{2^{2015}-2}\)
\(B=\frac{2^{2014}-1}{2\left(2^{2014}-1\right)}\)
\(B=\frac{1}{2}\)
\(\Rightarrow A-B=\frac{3}{7}-\frac{1}{2}=\frac{6}{14}-\frac{7}{14}\)
\(A-B=\frac{6-7}{14}=\frac{-1}{14}\)
VẬY, \(A-B=\frac{-1}{14}\)
\(\frac{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}}{\frac{2013}{1}+\frac{2014}{2}+\frac{2015}{3}+...+\frac{4024}{2012}-2012}\)
\(=\frac{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}}{\left(\frac{2013}{1}-1\right)+\left(\frac{2014}{2}-1\right)+\left(\frac{2015}{3}-1\right)+...+\left(\frac{4024}{2012}-1\right)}\)
\(=\frac{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}}{\frac{2012}{1}+\frac{2012}{2}+\frac{2012}{3}+...+\frac{2012}{2012}}\)
\(=\frac{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}}{2012.\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}\right)}\)
\(=\frac{1}{2012}\)
Ủng hộ mk nha ^_-