Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{1000\cdot1001}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{1000}-\frac{1}{1001}\)
\(=1-\frac{1}{1001}\)
\(=\frac{1000}{1001}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{101}-\frac{1}{102}\)
\(=1-\frac{1}{102}\)
\(=\frac{101}{102}\)
1/1.2 + 1/2.3 + 1/3.4 + ... + 1/101.102
Đặt A = 1/1.2 +1/2.3 + 1/3.4 + ... + 1/101.102
A = 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/101 - 1/102
A = 1/1 - 1/02
A = 101/102
Vậy A = 101/102
bài 1
Ta có : 2016/2017<1
2017/2018<1
Nên 2016/2017=2017/2018
Bài 1 :
a) Ta có : \(\frac{2016}{2017}=1-\frac{1}{2017}\)
\(\frac{2017}{2018}=1-\frac{1}{2018}\)
Vì \(-\frac{1}{2017}< -\frac{1}{2018}\)nên \(\frac{2016}{2017}< \frac{2017}{2018}\)
b) Ta có : \(\frac{2018}{2017}=1+\frac{1}{2017}\)
\(\frac{2017}{2016}=1+\frac{1}{2016}\)
Vì \(\frac{1}{2017}< \frac{1}{2016}\) nên \(\frac{2018}{2017}< \frac{2017}{2016}\)
Câu 2 :
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{101.103}\)
\(=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{101.103}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{101}-\frac{1}{103}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{103}\right)\)
\(=\frac{1}{2}.\frac{102}{103}=\frac{51}{103}\)
a.\(\frac{3\cdot4\cdot7}{12\cdot8\cdot9}\)= \(\frac{3\cdot4\cdot7}{3\cdot4\cdot8\cdot9}\)= \(\frac{7}{72}\)
b. \(\frac{4\cdot5\cdot6}{12\cdot10\cdot8}\)= \(\frac{4\cdot5\cdot2\cdot3}{3\cdot4\cdot5\cdot2\cdot8}\)= \(\frac{1}{8}\)
c.\(\frac{5\cdot6\cdot7}{12\cdot14\cdot15}\)= \(\frac{5\cdot6\cdot7}{2\cdot6\cdot2\cdot7\cdot3\cdot5}\)= \(\frac{1}{12}\)
\(\frac{1}{1.3.5}+\frac{1}{3.5.7}+\frac{1}{5.7.9}+...+\frac{1}{99.101.103}\)
=\(\frac{1}{4}\left(\frac{4}{1.3.5}+\frac{4}{3.5.7}+\frac{4}{5.7.9}+...+\frac{4}{99.101.103}\right)\)
=\(\frac{1}{4}\left(\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+...+\frac{1}{99.101}-\frac{1}{101.103}\right)\)
=\(\frac{1}{4}\left(\frac{1}{1.3}-\frac{1}{101.103}\right)\)
=\(\frac{1}{4}.\frac{10406}{31209}\)
=\(\frac{5230}{62418}\)
b) 1/3+1/3^2+1/3^3+1/3^4+1/3^5 (goi tong bang M)
3M=1+1/3+1/3^2+1/3^3+1/3^4
3M-M=1-1/3^5
2M=242/243
M=242/243*1/2=121/243
a, \(\frac{3.4.7}{12.8.9}\)= \(\frac{3.4.7}{3.4.8.9}\)= \(\frac{7}{72}\)
b, \(\frac{4.5.6}{12.10.8}\)= \(\frac{4.5.6}{3.4.2.5.8}\)= \(\frac{1}{8}\)
c, \(\frac{5.6.7}{12.14.15}\)= \(\frac{5.6.7}{2.6.2.7.3.5}\)= \(\frac{1}{12}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)