\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+........+\frac{1}{20.21.22}\)

...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2018

\(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+...+\frac{1}{20\cdot21\cdot22}=\frac{1}{2}\left(\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+...+\frac{2}{20\cdot21\cdot22}\right)\)

                                                                     \(=\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{20\cdot21}-\frac{1}{21\cdot22}\right)\)

                                                                     \(=\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{21\cdot22}\right)\)

                                                                     \(=\frac{1}{2}\left(\frac{231}{462}-\frac{1}{462}\right)=\frac{1}{2}\cdot\frac{230}{462}=\frac{1}{2}\cdot\frac{115}{231}=\frac{115}{462}\)

9 tháng 4 2018

* Công thức : 

\(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}\right)=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{6}\right)=\frac{1}{2}.\left(\frac{3}{6}-\frac{1}{6}\right)=\frac{1}{2}.\frac{2}{6}=\frac{1}{6}=\frac{1}{1.2.3}\)

9 tháng 4 2018

\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{20.21.22}\)

\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{20.21}-\frac{1}{21.22}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{21.22}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{462}\right)\)

\(=\frac{1}{2}.\left(\frac{231}{462}-\frac{1}{462}\right)\)

\(=\frac{1}{2}.\frac{230}{462}\)

\(=\frac{115}{462}\)

Chúc bạn học tốt !!! 

8 tháng 7 2016

                            Đặt \(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{98.99.100}\)

                                  \(A=\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{98.99.100}\right)\)

                                \(A=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)

                               \(A=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)

                            \(A=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{9900}\right)\)

                           \(A=\frac{1}{2}.\left(\frac{4950-1}{9900}\right)=\frac{1}{2}.\frac{4949}{9900}=\frac{4949}{19800}\)

                         Ủng hộ mk nha!!

28 tháng 4 2019

\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{37.38.39}\)

\(A=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{37.38}-\frac{1}{38.39}\right)\)

\(A=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{38.39}\right)\)

\(A=\frac{1}{2}.\frac{370}{741}\)

\(A=\frac{185}{741}\)

28 tháng 4 2019

\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{37.38.39}\)

\(\Leftrightarrow\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{37.38.39}\right)\)

\(\Leftrightarrow\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{37.38}-\frac{1}{38.39}\right)\)

\(\Leftrightarrow\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{38.39}\right)\)

Tự tính tiếp nha =)) mỏi tay quá

8 tháng 5 2018

Trả lời

\(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{18\cdot19\cdot20}\)

\(=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{18\cdot19}+\frac{1}{19\cdot20}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{18}-\frac{1}{19}+\frac{1}{19}-\frac{1}{20}\)

\(=1-\frac{1}{20}\)

\(=\frac{19}{20}\)

8 tháng 5 2018

\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{18.19.20}\)

\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{18.19}-\frac{1}{19.20}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{19.20}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{380}\right)\)

\(=\frac{1}{2}.\left(\frac{190}{380}-\frac{1}{380}\right)\)

\(=\frac{1}{2}.\frac{189}{380}\)

\(=\frac{189}{760}\)

Chúc bạn học tốt !!! 

16 tháng 7 2017

\(C=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{99.100.101}\)

\(C=\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+....+\frac{101-99}{99.100.101}\)

\(C=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{99.100}+\frac{2}{100.101}\)

\(C=\frac{1}{2}\cdot\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{99.100}-\frac{1}{100.101}\right)\)

\(C=\frac{1}{2}\cdot\left(\frac{1}{1.2}-\frac{1}{100.101}\right)\)

\(C=\frac{1}{2}\cdot\frac{5049}{10100}=\frac{5049}{20200}\)

16 tháng 7 2017

Bài này hơi dài nên bạn tham khảo tại đây nha :

Câu hỏi của Kim Sura xXx pÉ heO - Toán lớp 6 - Học toán với OnlineMath

18 tháng 4 2016

= 38/39

15 tháng 5 2016

2A=\(\frac{2}{1\cdot2\cdot3}\)+\(\frac{2}{2\cdot3\cdot4}\)+\(\frac{2}{3\cdot4\cdot5}\)+...+\(\frac{2}{2014\cdot2015\cdot2016}\)

2A=\(\frac{1}{1\cdot2}\)-\(\frac{1}{2\cdot3}\)+\(\frac{1}{2\cdot3}\)-\(\frac{1}{3\cdot4}\)+\(\frac{1}{3\cdot4}\)-\(\frac{1}{4\cdot5}\)+...+\(\frac{1}{2014\cdot2015}\)-\(\frac{1}{2015\cdot2016}\)

2A=\(\frac{1}{2}\)-\(\frac{1}{2015\cdot2016}\)

A=(\(\frac{1}{2}\)-\(\frac{1}{2015\cdot2016}\)):2

A=\(\frac{1}{2}\):2-\(\frac{1}{2015\cdot2016}\):2

A=\(\frac{1}{4}\)-\(\frac{1}{2015\cdot2016\cdot2}\)<\(\frac{1}{4}\)

Vậy A<\(\frac{1}{4}\)

16 tháng 5 2018

Ta có : 

\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{2014.2015.2016}\)

\(\Rightarrow2A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{2014.2015.2016}\)

\(\Rightarrow2A=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{2014.2015}-\frac{1}{2015.2016}\)

\(\Rightarrow2A=\frac{1}{1.2}-\frac{1}{2015.2016}\)

\(\Rightarrow A=\left(\frac{1}{2}-\frac{1}{2015.2016}\right):2\)

\(\Rightarrow A=\frac{1}{4}-\frac{1}{2015.2016}\)

\(\Rightarrow A< \frac{1}{4}\)

Vậy A < \(\frac{1}{4}\)

_Chúc bạn học tốt_

16 tháng 5 2018

Ta có:

\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+....+\frac{1}{2014+2015+2016}\)

\(2A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+.....+\frac{2}{2014.2015.2016}\)

\(2A=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{2014.2015}-\frac{1}{2015.2016}\)

\(2A=\frac{1}{1.2}-\frac{1}{2015.2016}\)

\(\Rightarrow2A< \frac{1}{1.2}=\frac{1}{2}\)

\(\Rightarrow A< \frac{1}{4}\)

Vậy .... 

4 tháng 3 2020

Ta có : \(B=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{18.19.20}\)

\(\Leftrightarrow2B=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{18.19.20}\)

\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+....+\frac{1}{18.19}-\frac{1}{19.20}\)

\(=\frac{1}{2}-\frac{1}{19.20}=\frac{189}{380}\)

\(\Rightarrow B=\frac{189}{760}\)

\(B=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{18.19.20}\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\frac{1}{2}\left(\frac{1}{2.3}-\frac{1}{3.4}\right)+...+\frac{1}{2}\left(\frac{1}{18.19}-\frac{1}{19.20}\right)\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{18.19}-\frac{1}{19.20}\right)\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{19.20}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{380}\right)\)

\(=\frac{1}{2}.\frac{189}{380}=\frac{189}{760}\)