K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

So sánh:

\(P=\frac{4}{7}+5+\frac{3}{7^2}+\frac{5}{7^3}+\frac{6}{7^4}\)

\(Q=\frac{5}{7^4}+5+\frac{6}{7^2}+\frac{4}{7}+\frac{5}{7^3}\)

Ta có : \(P=\left\{\frac{4}{7}+5+\frac{5}{7^3}\right\}+\left\{\frac{3}{7^2}+\frac{6}{7^4}\right\}\)

           \(Q=\left\{\frac{4}{7}+5+\frac{5}{7^3}\right\}+\left\{\frac{5}{7^4}+\frac{6}{7^2}\right\}\)

So sánh : \(\frac{3}{7^2}+\frac{6}{7^4}\)và \(\frac{5}{7^4}+\frac{6}{7^2}\)

Ta có : \(\frac{3}{7^2}+\frac{6}{7^4}=\frac{49.3}{7^4}+\frac{6}{7^4}\)

            \(\frac{5}{7^4}+\frac{6}{7^2}=\frac{5}{7^4}+\frac{49.6}{7^4}\)

Vì 49.3 + 6 < 49.6 + 5 nên Q > P.

           

19 tháng 3 2018

Ta có : 

\(\frac{\frac{2}{5}-\frac{2}{9}+\frac{2}{11}}{\frac{7}{5}-\frac{7}{9}+\frac{7}{11}}-\frac{\frac{1}{3}-\frac{1}{4}+\frac{1}{5}}{\frac{7}{6}-\frac{7}{8}+\frac{7}{10}}\)

\(=\)\(\frac{2\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{11}\right)}{7\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{11}\right)}-\frac{\frac{1}{3}-\frac{1}{4}+\frac{1}{5}}{\frac{7}{2}\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{5}\right)}\)

\(=\)\(\frac{2}{7}-\frac{1}{\frac{7}{2}}\)

\(=\)\(\frac{2}{7}-\frac{2}{7}\)

\(=\)\(0\)

Chúc bạn học tốt ~ 

19 tháng 3 2018

thank nha

13 tháng 8 2015

= (72)24 x (53)10 x 28- 530 x 749 x (22)5 / 529 x (24)2 x 748

= 748 x 530 x 28 - 530 x 749 x 210 / 529x 28 x 748

= 748 x 530 x 28 x (1 - 7 x 22/529 x  28 x 748

 

=748 x 530 x 28 x (-27) / 529 x  28 x 748

=5 x (-27) = -135

=

16 tháng 8 2020

mọi người giúp mình nha

16 tháng 8 2020

a) \(\frac{7^3.5^8}{49.25^4}=\frac{7^3.5^8}{7^2.5^8}=7\)

b) \(\frac{3^9.25.5^3}{15.625.3^8}=\frac{3^9.5^2.5^3}{3.5.5^4.3^8}=\frac{3^9.5^5}{3^9.5^5}=1\)

c) \(\frac{2^{50}.3^{61}+2^{90}.3^{16}}{2^{51}.3^{61}+2^{91}.3^{16}}=\frac{2^{50}.3^{16}\left(3^{45}+2^{40}\right)}{2^{51}.3^{16}\left(3^{45}+2^{40}\right)}=\frac{1}{2}\)

d) \(\left(\frac{2}{5}-\frac{1}{2}\right)^2+\left(\frac{1}{2}+\frac{3}{5}\right)^2\)

\(=\left(\frac{-1}{10}\right)^2+\left(\frac{11}{10}\right)^2\)

\(=\frac{1}{100}+\frac{121}{100}=\frac{122}{100}=\frac{61}{50}\)