Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{17}{2}-\left|2x-\frac{5}{2}\right|=-\frac{7}{6}\)
\(\left|2x-\frac{5}{2}\right|=\frac{17}{2}-\frac{-7}{6}\)
\(\left|2x-\frac{5}{2}\right|=\frac{51}{6}+\frac{7}{6}\)
\(\left|2x-\frac{5}{2}\right|=\frac{29}{3}\)
\(2x-\frac{5}{2}=\frac{29}{3}\)hoặc \(2x-\frac{5}{2}=\frac{-29}{3}\)
Trường hợp 1:
\(2x-\frac{5}{2}=\frac{29}{3}\)
\(2x=\frac{29}{3}+\frac{5}{2}\)
\(2x=\frac{73}{6}\)
\(x=\frac{73}{6}:2\)
\(x=\frac{73}{12}\)
Trường hợp 2:
\(2x-\frac{5}{2}=\frac{-29}{3}\)
\(2x=\frac{-29}{3}+\frac{5}{2}\)
\(2x=\frac{-43}{6}\)
\(x=\frac{-43}{6}:2\)
\(x=\frac{-43}{12}\)
Vậy \(x=\frac{73}{12}\)hoặc \(x=\frac{-43}{12}\)
Bài làm
\(D=\frac{6}{3,5}+\frac{6}{5.7}+...+\frac{6}{21.23}\)
\(D=3.\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{21.23}\right)\)
\(D=3.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{21}-\frac{1}{23}\right)\)
\(D=3.\left(\frac{1}{3}-\frac{1}{23}\right)\)
\(D=3.\frac{20}{69}\)
\(D=\frac{20}{23}\)
Học tốt
Bài làm
\(D=\frac{6}{3.5}+\frac{6}{5.7}+...+\frac{6}{21.23}\)
\(D=3.\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{21.23}\right)\)
\(D=3.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{21}-\frac{1}{23}\right)\)
\(D=3.\left(\frac{1}{3}-\frac{1}{23}\right)\)
\(D=3.\frac{20}{69}\)
\(D=\frac{20}{23}\)
\(E=\frac{20}{11.13}+\frac{20}{13.15}+\frac{20}{15.17}+...+\frac{20}{53.55}\)
\(E=10.\left(\frac{2}{11.13}+\frac{2}{13.15}+\frac{2}{15.17}+...+\frac{2}{53.55}\right)\)
\(E=10.\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+\frac{1}{15}-\frac{1}{17}+...+\frac{1}{53}-\frac{1}{55}\right)\)
\(E=10.\left(\frac{1}{11}-\frac{1}{55}\right)\)
\(E=10.\frac{4}{55}\)
\(E=\frac{8}{11}\)
\(G=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{9900}\)
\(G=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
\(G=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)
\(G=\frac{1}{1}-\frac{1}{100}\)
\(G=\frac{99}{100}\)
Nhớ k cho m nha
\(\frac{2x+1}{3}=\frac{x-5}{2}\)
\(\Rightarrow2\left(2x+1\right)=3\left(x-5\right)\)
\(\Rightarrow4x+2=3x-15\)
\(\Rightarrow4x-3x=-15-2\)
\(\Rightarrow x=-17\)
Ta có:
\(\frac{2x+1}{3}=\frac{x-5}{2}\)
\(\Rightarrow\left(2x+1\right)2=\left(x-5\right)3\)
\(\Rightarrow4x+2=3x-15\)
\(\Rightarrow4x-3x=-15-2\)
\(\Rightarrow x=-17\)
Vậy x = -17
Ta có : \(\frac{\frac{3}{5}+\frac{3}{7}-\frac{1}{3}+\frac{3}{11}}{\frac{6}{5}+\frac{6}{7}-\frac{2}{3}+\frac{6}{11}}=\frac{\frac{3}{5}+\frac{3}{7}-\frac{1}{3}+\frac{3}{11}}{2\left(\frac{3}{5}+\frac{3}{7}-\frac{1}{3}+\frac{3}{11}\right)}=\frac{1}{2}\)
Lại có : \(\frac{\left(\frac{1}{4}-\frac{1}{5}-\frac{1}{20}\right).2021}{\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}}=\frac{0.2021}{\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}}=0\)
Khi đó \(B=\frac{1}{2}+0=\frac{1}{2}\)
\(-\frac{3}{6}=\frac{x-1}{6}\)
\(\Rightarrow-3=x-1\)
\(\Rightarrow x=-3+1\)
\(\Rightarrow x=-2\)
-1/2=x-1/6
=> (-1).6=(x-1).2 (Áp dụng tích chất 2 phân số bằng nhau thì 2 tích chéo bằng nhau)
=> (x-1).2=-6
=> x-1 =(-6):2
=> x-1 =-3
=> x =(-3)+1
=> x =-2
Vậy x=-2