K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
SE
0
AH
Akai Haruma
Giáo viên
1 tháng 4 2019
Lời giải:
Vì \(1< x< 3\Rightarrow \left\{\begin{matrix}
|x-3|=|3-x|=3-x\\
|x-1|=x-1\end{matrix}\right.\). Khi đó:
\(A=\frac{|x-3|}{x-3}-\frac{|x-1|}{1-x}+|x-1|+|3-x|\)
\(=\frac{3-x}{x-3}-\frac{x-1}{1-x}+x-1+3-x\)
\(=-1-(-1)+2=2\)
Vậy giá trị của $A$ là $2$
11 tháng 3 2017
Áp dụng định lý Bézout (Số dư trong phép chia đa thức f(x) cho nhị thức x-a bằng giá trị của f(a), ta được: số dư là 1
HN
14 tháng 3 2017
x^30+x^4-x^1975+1=(x-1).Q(x)+R ( R là số dư)
lấy x-1=0 thế x=1 vào 1^30+1^4-1^1975+1=2 . vẬY SỐ DƯ LÀ 2
17